摘要。Mimivivus是一种巨型病毒,可感染变形虫,长期以来由于其大小而被认为是细菌。病毒颗粒由直径约500 nm的蛋白质衣帽组成,该蛋白质的直径封闭在多糖层中,其中约有120-140 nm长的纤维嵌入,总直径为700 nm。该病毒的基因组大小为1.2 Mb DNA,令人惊讶的是,仅在不进入细胞核的情况下在感染细胞的细胞质中复制,这在DNA病毒中是独特的特征。他们的存在是不可否认的;然而,与任何新发现一样,仍然存在有关其致病性机制的不确定性,以及Mimivulus Virophage耐药性元件系统(Mimivire)的性质,该术语描述了Mimivirus的免疫网络,这些术语与CRISPR -CAS系统非常相似。本综述的范围是讨论源自对麦米病毒的独特特征进行的结构和功能研究的最新发展,以及有关其针对人类推定的临床相关性的研究。
电子邮件:l160005@e.ntu.edu.sg( *通讯作者)推荐引用。Seah Awk&Low JH(2024)生物多样性记录:中央集水区自然保护区的Bird's Nest Fungus,Cyathus Striatus。新加坡的自然,17:e2024076。doi:10.26107/nis-2024-0076受试者:条纹鸟的巢真菌,cyathus纹状体(basidiomycota:agaricales:agaricales:agricomycetes:nidulariaceae)。主体确定为:Jian Hui Low。位置,日期和时间:新加坡岛,中央集水区自然保护区,Terentang Trail,1.357029°N,103.817227°E; 2024年6月1日;大约1800小时。栖息地:次要雨林,泥土路径侧面的叶子斑块。观察者:Jian Hui Low。观察:在倒下的躯干上发现了一块约120厘米x 40厘米的鸟巢真菌,紧邻叶子的垃圾和覆盖物(图。1)。每个水果体的直径约为1-1.5厘米,高度高达2厘米,并具有明显的条纹(图2)。大多数杯子中都存在着不同数量的peridioles(鸡蛋状结构,直径约1.5-2 mm)(图。2)。
摘要:荧光检测是目前世界范围内常用的技术之一。本文讨论了一种有趣的复合材料的制备和光学特性。结果表明,将溶胶-凝胶自燃法获得的钴尖晶石铁氧体 (CoFe 2 O 4 ) 封装到聚[二苯基-甲基 (H)]硅烷基质中,可得到具有有趣光学特性的氟磁性粒子 (PSCo)。透射电子显微镜结合能量色散 X 射线分析显示,500 nm 大的球形结构包含一个由磁性铁氧体颗粒组成的核心(直径约 400 nm),周围包裹着一层薄薄的半导体荧光聚合物。所获得的材料表现出亚铁磁性。FTIR 光谱证实聚硅烷的 Si-H 功能得以保留。紫外光谱结合分子建模研究表明,磁芯对 σ 共轭聚硅烷分子内电子跃迁特性有很强的影响。稳态荧光光谱的进一步分析表明,内部磁场大大增强了聚硅烷的发射。未来将进一步研究这一特性,以开发新的检测装置。
微小RNA(miRNA)是一类小型非编码RNA,在调控基因表达和相关病理过程中发挥着至关重要的作用。1,2作为一种重要的生物标志物,miRNA在细胞内的分布和表达与许多疾病,尤其是癌症有着密切的关系。因此,miRNA的体外检测和原位成像都有利于疾病诊断。3最近,外泌体是一种直径约30 – 150纳米的小型载体,含有几种不同的生物分子,包括蛋白质、脂质以及mRNA和非编码RNA。外泌体也被认为是细胞 - 细胞通讯介质中的重要部分,因为它们可以将其内容物(尤其是miRNA)释放到邻近细胞和远端细胞。4 – 6因此,外泌体miRNA被视为疾病诊断和病理研究的有前途的生物标志物。据报道,许多 miRNA 检测方法,如实时定量聚合酶链式反应 (qRT-PCR)、北方印迹、微阵列,可在溶液或细胞裂解物中实现灵敏的 miRNA 检测。7,8 尽管如此,这些方法也因步骤耗时、程序复杂和成本昂贵而受到批评,阻碍了它们的广泛应用。7,9,10
ST 系统(即为近地至 16 公里以上的系统设计的系统)最常用的天线元件类型是同轴共线 (COCO)。COCO 元件通常是天线罩材料(玻璃纤维或塑料)内部的中心馈电半偶极子阵列,长约 5 米以上,直径约 8 厘米。许多 COCO 以阵列形式设置,通过使用波束转向单元 (BSU),阵列可以指向轴外和垂直方向。始终使用两个相互垂直的 COCO 阵列,因此天线可以指向三个或五个方向(例如,N、E、V 或 N、S、E、W、V)。COCO 阵列的性能相当不错,但也存在一些局限性,包括:1) 大元件尺寸难以在阵列中运输和更换,2) 天线指向方向仅限于 3 或 5 个方向,3) 难以进行幅度锥化,因此旁瓣难以管理,4) 带宽非常窄,因此在传输后会“振铃”(这会阻止低高度数据捕获),5) 它们是专用部件,不一定易于制造,6) 单个 COCO 元件故障会对整个天线波束产生重大影响,7) BSU 使用高功率机械继电器,其磨损时间最短为 18 个月。
摘要。未来空中风能技术的公用事业规模部署需要开发大规模多兆瓦系统。本研究旨在量化大气边界层 (ABL) 与农场中运行的大规模空中风能系统之间的相互作用。为此,我们提出了一种虚拟飞行模拟器,结合大涡模拟来模拟湍流条件和飞行路径生成和跟踪的最佳控制技术。通过实施与模型预测控制器配对的执行器扇区方法,实现了流动和系统动力学之间的双向耦合。在本研究中,我们考虑了地面发电泵送模式 AWE 系统(升力模式 AWES)和机载发电 AWE 系统(阻力模式 AWES)。该飞机翼展约 60 米,飞行大回旋直径约 200 米,中心高度为 200 米。对于升力模式 AWES,我们还研究了不同的放出策略,以减少系留翼与自身尾流之间的相互作用。此外,我们还研究了由 25 个系统组成的 AWE 园区,这些系统排列成五排,每排五个系统。对于升力和阻力模式原型,我们考虑采用中等园区布局,功率密度为 10 MW km − 2
石墨烯具有有希望的物理和化学特性,例如高强度和柔韧性,再加上高电导率和热导率。因此,它被整合到基于聚合物的复合材料中,以用于电子和光子学应用。与石墨烯发育相关的主要约束是,具有强疏水性,几乎所有分散体(通常是其处理和处理所需施用所必需的)都是在有毒的有机溶剂中制备的,例如N-甲基吡咯烷酮或N,N,N-二甲基甲酰胺。在这里,我们描述了如何使用球磨机制备去角质石墨。通过电子显微镜和拉曼光谱法测量,产生的石墨烯平均为三到四层厚,直径约500 nm。可以以光实体的形式存储;并且很容易分散在水性媒体中。我们的方法包括四个主要步骤:(i)有机分子(三聚氰胺)在石墨中的机械化学插入,然后在水中悬浮; (ii)洗涤悬浮石墨烯以消除大多数三聚氰胺; (iii)稳定石墨烯片的隔离; (iv)冻结以获得石墨烯粉末。该过程分别用于水性悬浮液和干粉末的6-7或9-10 d。该产品具有明确的属性,可用于许多科学和技术应用,包括毒理学影响评估和创新医疗设备的生产。
所研究的 LCLC 是色甘酸二钠 (DSCG) 的水溶液,这种材料的商品名为“色甘酸”或“色甘酸钠”,是预防过敏和哮喘相关症状的药物中的活性成分。2 在水中,DSCG 分子面对面堆叠,使其疏水核心免受极性环境的影响。这种自组装产生细长的圆柱形聚集体,直径约 2 纳米,堆叠距离为 0.34 纳米,这使它们类似于双链 DNA (dsDNA)。然而,dsDNA 是手性的,而 DSCG 分子不是,并且没有沿聚集体轴的持续扭曲。这种分子尺度的差异在宏观层面上表现出色。在水溶液中,dsDNA 分子相对于彼此扭曲,形成所谓的胆甾型液晶,其宏观螺距在微米级。分子手性和宏观手性之间微妙的关系仍是当前研究的课题。3 相反,水中的非手性 DSCG 聚集体彼此平行排列,形成具有优选方向 n ̂ 的镜像对称向列液晶,该方向称为指向矢。手性分子的手性堆积随处可见,而非手性分子的手性堆积却很少见。非手性分子形成的液晶的宏观镜像对称性破缺需要特殊的空间限制。Charles-Victor Mauguin 在巴黎参加了 Pierre Curie 关于物理效应对称性的讲座后,萌生了探索晶体学和液晶的想法,并
大型陨石碰撞引起的地球轴变化 GALLANT 1 评估了大型陨石碰撞引起的地球轴变化。但他估计的位移比我十年前发表的更大,而且最近略有修改。他计算出一颗朱诺大小的陨石(直径约 190 公里)以 20 公里/秒的速度碰撞将导致 0° 45 的轴位移。但是,通过使用地球角动量与碰撞体动量矩相互作用的正确标准,实际位移只有大约 0° 02'。事实上,一个更大的物体,比如直径 320 公里,以 72 公里/秒的最大可能速度碰撞,尽管能量是朱诺示例的 75 倍,也只会产生 0° 32' 的轴位移。表 1 给出了与地球和月球碰撞的最大影响的例子。假设碰撞路径与垂直于赤道的大圆相切,密度为 3.5,速度为 72 公里/秒,爆炸产物反向碰撞引起的完全反弹最大程度地近似于两倍动量交换。在这些绝对最佳的条件下,轴位移为反正切(2m VR:地球的角动量),其中 m V 是陨石的动量,R 是地球或月球的半径。当假设碰撞与赤道相切时,轴变化为零,但两个动量会导致自转速度的变化。月球的等效变化要大得多,它们表明,只要有耐心和时间,人类就有可能在没有卫星和登陆月球的情况下看到整个表面。它们也与月球形状的考虑有关。
摘要:适体功能化的生物传感器在监测复杂环境中的神经递质方面表现出高选择性。我们将纳米级适体修饰的纳米移液器传感器转化为检测体外和离体内源性多巴胺的释放。这些传感器采用具有纳米级孔(直径约 10 纳米)的石英纳米移液器,其用适体功能化,从而能够通过目标特定的构象变化选择性捕获多巴胺。多巴胺结合后适体结构的动态行为导致纳米孔内表面电荷的重排,从而导致可测量的离子电流变化。为了实时评估传感器性能,我们设计了一个流体平台来表征纳米移液器传感器的时间动态。然后,我们通过在生物环境中部署用非特异性 DNA 修饰的对照传感器以及多巴胺特异性传感器来进行差异生物传感。我们的研究结果证实了适体修饰的纳米移液器可用于直接测量未稀释的复杂流体,特别是在人类诱导多能干细胞衍生的多巴胺能神经元的培养基中。此外,传感器植入和急性脑切片中的重复测量是可能的,这可能是由于纳米级 DNA 填充孔内的受保护传感区域,最大限度地减少了非特异性干扰物的暴露并防止堵塞。此外,背外侧纹状体通过电刺激释放的内源性多巴胺的差异记录表明适体修饰的纳米移液器具有以前所未有的空间分辨率和减少的组织损伤进行体外记录的潜力。关键词:生物传感器、DNA、多巴胺、流体学、诱导多能干细胞衍生的神经元、纳米孔■简介