囊性纤维化 (CF) 是由 CF 跨膜传导调节器 (CFTR) 基因突变引起的。我们试图通过系统性递送肽核酸基因编辑技术(由生物相容性聚合物纳米颗粒介导)来纠正 F508del CF 致病突变引起的多器官功能障碍。我们在气液界面生长的 F508del 小鼠的原代鼻上皮细胞中证实了体外表型和基因型修饰,并在静脉内递送后在 F508del 小鼠体内证实了表型和基因型修饰。体内治疗导致上皮细胞中 CFTR 功能部分增强(通过原位电位差和 Ussing 室测定测量)以及气道和胃肠道组织中的 CFTR 得到纠正,并且没有高于背景的脱靶效应。我们的研究表明系统性基因编辑是可能的,更具体地说,静脉内递送旨在纠正 CF 致病突变的 PNA NP 是改善多个受影响器官中 CF 的可行选择。
一般资格标准包括:目标犯罪定罪、没有因暴力或性犯罪而被拘留的重罪、没有因暴力或性犯罪而被定罪的重罪、在惩教机构中没有因暴力或性行为不端而受到过纪律处分、没有表明暴力的精神健康问题记录,并且罪犯不会对社会构成威胁。
太空技术不仅对太空医学做出了巨大贡献,也对地面医学做出了巨大贡献,地面医学积极地将这些技术应用于日常实践中。基于现有的对策,并且由于失重引起的感觉运动改变与各种神经系统疾病的相似性,人们已经投入了大量工作来调整和引入这些对策以用于患者的康复。轴向负重服和足底支撑区的机械刺激可用于缓解中风和创伤性脑损伤的后果。它们也适用于脑瘫儿童的康复。在神经康复计划中综合应用这些本体感受矫正方法可以有效治疗患有严重运动障碍和严重脑损伤的神经系统患者。
版权所有 © 2022 Rouse 等人。这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是对原始作品进行适当的署名。
不同细胞群体的位点特异性遗传和表观遗传靶向是分子神经科学的核心目标,对于理解基因调节机制至关重要,这些基因调节机制是基于复杂的表型和行为的基础。虽然最近的技术进步已经实现了对基因表达的前所未有的控制,但其中许多方法都集中在选定的模型生物上和/或需要针对不同应用的劳动密集型定制。群集定期插入短质体重复序列(基于CRISPR)的系统的简单性和模块化已改变了基因组编辑并扩展了基因调节工具箱。但是,几乎没有可用于神经元细胞选择性CRISPR调节的工具。我们设计,验证和优化的CRISPR激活(CRISPRA)和CRISPR干扰(CRISPRI)系统用于CRE重组酶依赖性基因调节。出乎意料的是,基于传统的双流传式开放阅读框(DIO)策略的CRISPRA系统即使没有CRE也会显示出漏水的靶基因诱导。因此,我们开发了一种含有内含子的CRE依赖性CRISPRA系统(SVI-DIO-DCAS9-VPR),该系统减轻了泄漏基因诱导,并在HEK293T细胞和大鼠原发性神经元培养物中的内源基因上的传统DIO系统表现优于传统的DIO系统。使用基因特异性CRISPR SGRNA,我们证明了SVI-DIO-DCAS9-VPR可以以CRE特异性方式激活许多大鼠或人类基因(GRM2,TENT5B,FOS,SSTR2和GADD45B)。为了说明该工具的多功能性,我们创建了一个平行的CRISPRI构建体,该构建体仅在CRE存在下仅在HEK293T细胞中成功抑制了荧光素酶报告器的表达。这些结果为跨不同模型系统的CRE依赖性CRISPR-DCAS9方法提供了强大的框架,并在与常见的CRE驱动线或通过病毒载体交付时实现了细胞特异性靶向。
关于能量循环的开创性研究表明,在没有温度偏见的情况下,如何产生能量频道[1-13]。这种原理可以可能应用于建立纳米级的能量矩形[6]。从理论的角度来看,能量传输通常与声子有关,但是与单个颗粒相比,这些集体激发更难以操纵[6,14]。先前的研究利用了非线性相互作用[4],Athermal Baths [2],绝热调制[5]或量子浮球系统[15]提供的机会。使用奇偶校验的超材料和非平衡强迫的组合,我们最近的工作[16]发现了新的矩形原理,这些原理表现出网络系统中站点之间的定向能量流。与许多以前的研究集中在两个直接连接的终端之间的运输[4]或通过不对称段[2-4]之间,我们的设置将所有节点及其连接置于平等的基础上[11-13],从而使将直接拟合研究扩展到具有复杂拓扑和差异的网络。基于我们最近的工作[16],在这里我们研究了增加的时间周期调制的效果。我们的模型系统是一类春季网络,每个质量都受到时间调节的洛伦兹力[17,18],并浸入活性浴中[19]。使用数值计算,我们表明时间调制系统能够纠正节点和浴室之间的能量频率。换句话说,尽管没有温度偏见,但我们的模型仍可以充当多体能泵。作为比较,我们以前的未调制系统[16]支持站点之间的净能量传输,但不支持站点和浴室之间的净能量传输。该调制会扩大工具箱,以操纵复杂网络中的能量传输。
目的颅颌面重塑治疗颅缝早闭的主要目的在于矫正畸形,但其可能引起的颅压增高,以及神经认知损伤和神经心理障碍也不容忽视。额眶前移术(FOA)后的复发率似乎很高,但迄今为止,尚无客观的测量技术。本研究旨在利用计算机辅助设计(CAD)和计算机辅助制造(CAM)创建个性化的3D打印模板来矫正颅缝早闭,并在随访中使用术后3D照片头部和面部表面扫描来量化FOA的结果。方法作者纳入了2014年至2020年期间接受FOA的所有患者,所有患者均使用个性化的基于CAD/CAM的3D打印模板,并在术后随访中使用3D照片面部和头部扫描。自 2016 年以来,作者常规计划在患侧基于 CAD 的 FOA 矫正基础上额外进行 3 毫米的“过度矫正”。将 FOA 矫正的虚拟计划眶上角与术后 3D 照片头部和面部表面扫描测量的术后眶上角进行比较。主要结果是计划的 CAD/CAM FOA 矫正与基于 3D 照片实现的矫正之间的差异。次要结果包括有和没有“过度矫正”的结果、手术时间、失血量和发病率。结果短期随访(术后平均 9 个月;14 名患者)显示计划眶上角和实现的眶上角之间有 12° 的差异。长期随访(平均 23 个月;8 名患者)显示眶上角停滞不前,复发率没有显著增加。术后患侧额外计划过度矫正(3 毫米)后,眶上角平均变化量为 11°,而未过度矫正时为 14°。整个队列(n = 36)的围手术期和术后并发症发生率很低,平均(SD)术中失血量为 128(60)毫升,平均(SD)输注红细胞量为 133(67)毫升。结论术后在 3D 照片上测量应用的 FOA 是一种可行且客观的手术结果评估方法。可以在术后 3D 照片上分析使用 CAD/CAM 计划的 FOA 矫正与实际矫正之间的差异。将来,借助这些技术,可能计算出 FOA 后避免患侧复发所需的“过度矫正”量。
摘要:背部和脊柱相关问题是大多数人一生中经常遇到或将要遇到的疾病。可以做出的一个常见且明智的观察是关于个人的姿势。我们提出了一种新方法,将加速度计、陀螺仪和磁力计传感器数据与永磁体相结合,组装成一个可穿戴设备,能够实时监测脊柱姿势。每个用户都需要对设备进行独立校准。传感器数据由概率分类算法处理,该算法将实时数据与校准结果进行比较,验证数据点是否位于计算阈值定义的置信区域内。如果加速度计和磁力计都将姿势分类为不正确,则认为姿势分类不正确。在单个成年测试对象中进行了试点试验。磁铁和磁力计的组合大大提高了姿势分类准确度(89%),而仅使用加速度计数据时获得的准确度(47%)则为准确度。该方法的验证基于图像分析。
作者:M Zhang · 2020 · 被引用 50 次 — 摘要:口腔微生物学可能直接影响整体健康。牙龈卟啉单胞菌 (P. gingivalis) 是一种高致病性细菌,可导致...
但指出结果没有显著差异。6,7 由于目前对 I 期治疗的研究尚未提供明确答案,因此是否进行监督或治疗的决定通常基于临床经验、颅面生长和发育的时间、预防和治疗目标以及患者的个体因素。近年来,正畸医生越来越意识到 I 期扩张对气道测量的影响,例如最小横截面积和总气道容量。虽然有几篇文章表明使用快速腭扩张器 (RPE) 后气道容积的改善超出了正常生长的预期,8,9 但关于其他扩张方法的影响的证据有限。在混合牙列中使用透明矫正器治疗可能实现的气道益处尚未阐明。正畸医生也对旨在加速牙齿移动并可能减轻疼痛的方法表现出了浓厚的兴趣,包括使用振动刺激。10-12 尽管已经研究了振动技术对尖牙回缩、13 调平和对齐、14 和磨牙远移 15 等特定运动的影响,但尚未研究其在混合牙列治疗中的应用。本文报告了三例涉及使用透明矫正器和振动技术进行 I 期治疗的病例的结果。