1* 1化学与化学工程学院,甘努国际科学和技术合作基地,退水化学功能材料,西北师范大学,兰州730070,P.R。China 2 Key laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Research Centre, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China 3 Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory, and Department of Chemistry, University of Liverpool, Liverpool, UK L69 7ZD 4英国利物浦利物浦大学化学系L69 7ZD 5化学学院,伯明翰大学,伯明翰大学,埃德巴斯顿,英国伯明翰,英国伯明翰B15 2TT 2TT相应电子邮件:aicooper@liverpool@liverpool.ac.ac.uk; xgong@ecust.edu.cn; xfwu@liverpool.ac.uk; t.hasell@liverpool.ac.uk; quanzhengjun@hotmail.com; §:这些作者对这项工作也同样贡献。
纳米级过渡金属三硫属化物如 TiS 3 在基础研究和应用开发方面都表现出巨大的潜力,但它们的自下而上的合成策略尚未实现。在这里,我们探索了 TiS 3 的化学气相沉积 (CVD) 合成,其晶格各向异性使得其能够沿 b 轴优先生长,从而得到长宽比可通过生长温度调节的矩形纳米片或纳米带。所获得的纳米结构在保持与原始半导体 TiS 3 一样的光谱和结构特征的同时,表现出高电导率和超低载流子活化势垒,有望作为纳米级导体。我们的实验和计算结果表明,CVD 生长的 TiS 3 中 S 2 − 2 空位的存在是造成重 n 型掺杂直至简并能级的原因。此外,预计通过用环境中的氧原子钝化 S 2 − 2 空位可以恢复半导体性能。因此,这项工作预示着利用缺陷工程三硫属化物半导体构建纳米级电子器件的诱人可能性。
H 2 S现在被认为是多种哺乳动物细胞和组织中的内源性生理调节剂。Produced, in a regulated and cell type-dependent manner, by three major enzyme systems, cystathionine c -lyase (CSE), cystathio- nine b -synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST), H 2 S is present intra- and extracellularly and interacts with proteins, DNA, and other members of the reactive species interactome (例如,氧和氮衍生的氧化剂和自由基)并在各种目标和途径上发挥作用。H 2 S的生理作用在基因转录和翻译,细胞生物能学和代谢,血管张力和免疫功能中的调节中得到充分认识,在中枢神经系统和周围神经系统的各种功能以及与生理学家和临床医生相关的许多其他领域的调节中。本综述对H 2 S在哺乳动物细胞和器官中的生理调节作用进行了全面概述。在生理状况下对这些作用的理解以及对H 2 S稳态的扰动的日益了解(例如,血管疾病,血管疾病,代谢性疾病,各种形式的中枢神经系统疾病,各种形式的中枢神经系统疾病,对跨性别疾病的疾病,其他机构的疾病以及其他机理疗法的诊断和诊断的新机会。在这种情况下,基于H 2 s的替换(通过H 2 s-释放的小分子)的新型实验治疗方法已经出现,并正在转化为临床竞技场。在本综述中突出显示,由于生物合成和/或降解增加,在某些疾病中,H 2 S水平在病理上降低了(例如,再灌注损伤,动脉粥样硬化,动脉粥样硬化以及许多其他形式的血管疾病,以及衰减)。在其他疾病(例如,各种形式的炎症,唐氏综合症和癌症)中,H 2 S水平增加,并且抑制H 2 S产生酶正在作为一种实验性治疗方法出现。进一步了解H 2 S的生理调节作用,再加上旨在调节H 2 S稳态的小分子的药理学和翻译科学的进步,预计将来会产生新颖的诊断和临床疗法方法。
解决方案进行了广泛的资格测试后,Championx通过NIMS产品选择过程将SICI12589A确定为替代产品。现场试验证明了该产品在腐蚀控制中的表现优于现有产品,并且水分析显示了尺度沉积已被阻止。的变化不仅导致了大量的直接成本节省和提高的性能,而且通过消除大约125吨替代上列出的年度化学使用情况,对环境影响也有了很大的改善。
钾双离子电池(K-DIBS)由于其高安全性和功率密度引起了极大的兴趣。但是,为K-Dibs实现高率和良好的环状阳极仍然是一个巨大的挑战。在此,层次的TIS 2被认为是K-Dibs的有吸引力的阳极,该阳极的排放能力为91.0 mA H G-1,同时被放电/充电到半细胞中的2000个周期。有趣的是,这种稳定的能力归因于K +诱导的相变的机理。原位特征和第一原理计算表明,插入的K +最终是产生热力学稳定的TI-S层之间的支柱,最终最终是TIS 2相。可靠的K 0.25 Tis 2相显示扩大的层间空间,增强的电子电导率以及较低的扩散屏障,可以使K +的高度稳定和快速存储。此外,首次报道了基于Tis 2阳极和中碳微粒阴极的新型K-DIB。K-DIB在100 mA g-1处实现75.6 mA H G-1的可逆能力,并在5000 mA g-1时保持了85.8%的容量保留/充电,可容纳85.8%的能力保留。这种机械研究为分层硫化物/硒化的反应过程提供了新的见解,并将促进其在安全和高功率K-DIB中的应用。
钼二硫化物(MOS 2)是最相关的2D材料之一,主要是由于其半导体的直接带隙,使其成为电子,光电电子和光子学的有希望的材料。[8-10]同时,碳纳米管是研究精通的1D材料之一,可以提供高构成性和载体迁移率,[11,12],这使它们成为与MOS 2的混合尺寸异质结构相关的。的确,一些努力为MOS 2 /碳纳米管异质结构做出了贡献。例如,具有MOS 2和单壁碳纳米管的异质结构已通过干燥转移制造,并制造了垂直的场效应晶体管,该晶体管与MOS 2 /石墨烯设备相比,栅极调制深度增加了三个数量级。[13]混合二维异质结构设备可以用作活跃显示器中的薄膜晶体管,但是所证明的干燥转移显然不是可扩展性生产的理想方法。为了解决这个问题,开发了通过化学蒸气沉积(CVD)在单壁碳纳米管上直接沉积。过渡金属氧化物和硫用作在单壁碳纳米管膜上沉积MOS 2或WS 2的前体。[14]在这项工作中,混合尺寸的侵蚀设备具有吸引人的电气性能和出色的机械稳定性。但是,研究在研究中忽略了混合二维异质结构的堆叠顺序,这些异质结构可以提供对异质结构和电极之间的联系的特征。在这里,我们首次报告了一种直接合成MOS 2 /双壁碳纳米管(DWCNT)< /div>的方法
Yu,L.,Ong,S。J. H.,Liu,X.,Mandler,D。&Xu,J。 Z. (2021)。 在锂硫电池中多硫化物溶解的重要性以及对高能量电解质/阴极设计的视角。 Electrochimica Acta,392,139013-。 https://dx.doi.org/10.1016/j.electacta.2021.139013Yu,L.,Ong,S。J. H.,Liu,X.,Mandler,D。&Xu,J。Z.(2021)。在锂硫电池中多硫化物溶解的重要性以及对高能量电解质/阴极设计的视角。Electrochimica Acta,392,139013-。https://dx.doi.org/10.1016/j.electacta.2021.139013
1。UCL皇后广场神经病学研究所,英国伦敦UCL皇后广场研究所2.心理医学学院,心理学和神经科学研究所,英国伦敦国王学院,英国伦敦国王学院3.大脑映射单元,精神病学系,剑桥大学Herchel Smith大脑和心理科学大楼。精神病学部,英国伦敦帝国学院帝国学院; 5。 英国曼彻斯特大学神经科学与实验心理学系; 6。 MAHSC,英国曼彻斯特曼彻斯特大学; 7。 Lancashire和South Cumbria NHS基金会信托基金会,英国Accrington; 8。 剑桥郡和彼得伯勒NHS基金会信托基金会,英国剑桥; 9。 英国伯明翰大学心理健康研究所。 10。 爱丁堡大学临床脑科学中心精神病学系,精神病学部,英国伦敦帝国学院帝国学院; 5。英国曼彻斯特大学神经科学与实验心理学系; 6。 MAHSC,英国曼彻斯特曼彻斯特大学; 7。 Lancashire和South Cumbria NHS基金会信托基金会,英国Accrington; 8。 剑桥郡和彼得伯勒NHS基金会信托基金会,英国剑桥; 9。 英国伯明翰大学心理健康研究所。 10。 爱丁堡大学临床脑科学中心精神病学系,英国曼彻斯特大学神经科学与实验心理学系; 6。MAHSC,英国曼彻斯特曼彻斯特大学; 7。 Lancashire和South Cumbria NHS基金会信托基金会,英国Accrington; 8。 剑桥郡和彼得伯勒NHS基金会信托基金会,英国剑桥; 9。 英国伯明翰大学心理健康研究所。 10。 爱丁堡大学临床脑科学中心精神病学系,MAHSC,英国曼彻斯特曼彻斯特大学; 7。Lancashire和South Cumbria NHS基金会信托基金会,英国Accrington; 8。 剑桥郡和彼得伯勒NHS基金会信托基金会,英国剑桥; 9。 英国伯明翰大学心理健康研究所。 10。 爱丁堡大学临床脑科学中心精神病学系,Lancashire和South Cumbria NHS基金会信托基金会,英国Accrington; 8。剑桥郡和彼得伯勒NHS基金会信托基金会,英国剑桥; 9。英国伯明翰大学心理健康研究所。10。爱丁堡大学临床脑科学中心精神病学系,
图 2. (a) 机械剥离的 MoS 2 的光学显微照片,其中单层区域突出显示。(b) 沉积 1 nm CoPc 之前和之后单层 MoS 2 的拉曼光谱。A 1g 和 E 2g 峰之间的间隔约为 19 cm -1 ,表明为单层 MoS 2 。1100 – 1500 cm -1 范围内的拉曼模式是 CoPc 的特征。(c) 机械剥离的 MoS 2 和含有 1 nm CoPc 的 MoS 2 的 300 K PL 光谱。A 激子和相关的三子在 675 nm 处很突出,由于 B 激子的存在,可以看到一个小的高能肩。(d) MoS 2 和含有 1 nm CoPc 的 MoS 2 的 10 K 光致发光。在此温度下,除了 660 nm 和 600 nm 处的 A 和 B 激子外,MoS 2 缺陷发射在 700 nm 处也变得明显,
多硫化锂 (LiPSs) 的穿梭效应是阻碍锂硫电池发展的关键障碍之一。在此,我们提出了一种多孔 Mo 2 C-Mo 3 N 2 异质结构/rGO 主体,Mo 2 C-Mo 3 N 2 异质结构结合了 Mo 2 C 的高吸附性和 Mo 3 N 2 的高催化性的优点,从而实现了 LiPSs 在 Mo 2 C-Mo 3 N 2 异质界面上的快速锚定-扩散-转化。Mo 2 C-Mo 3 N 2 异质界面提高了 LiPSs 的捕获效率和向 Li 2 S 的转化率。rGO 为电子传输提供了快速路径,并充当了保护层,防止结构在循环过程中受损。密度泛函理论 (DFT) 计算表明,Mo 2 C 对 Li 2 S 4 的吸附能力比 Mo 3 N 2 强,Mo 3 N 2 具有更好的反应动力学特性。实验中,Mo 2 C-Mo 3 N 2 /rGO@S 电极表现出优异的倍率性能。在高硫负载量(3.4 和 5.0 mg cm − 2 )下,300 次循环后容量保持率为 78%,在 0.5C 下为 70%。Mo 2 C-Mo 3 N 2 /rGO 硫电极表现出 4.56 × 10 -7 cm 2 s − 1 的高 Li + 扩散系数,这得益于界面处 LiPSs 的加速转化。我们的研究结果揭示了 LiPSs 的锚定-扩散-转化在抑制穿梭效应方面的关键作用。