Cobalt Blue Holdings Limited (Cobalt Blue) 最近发布了一份投资者简报(2024 年 11 月 18 日),其中公司建议预计将获得 2024 年研发 (R&D) 税收返还。公司很高兴地宣布,12 月 11 日,它从澳大利亚税务局获得了约 240 万澳元的 2024 年研发税收激励返还。该返还与 Broken Hill 技术开发中心约 550 万澳元的投资有关。活动包括评估和优化关键单元操作,并为拟议的 Kwinana 钴精炼厂 (KCR) 的详细工程准备支持信息。今年全年,技术开发中心的主要重点是测试第三方原料以生产电池级硫酸钴和镍副产品。这项工作提供了重要的数据和信息,以推动项目进入下一阶段的预开发并最终进入财务投资决策。此外,Broken Hill 技术开发中心开发的技术和工艺旨在应用于从矿山废料中提取关键矿物。Cobalt Blue 工艺还可以去除酸性硫化物,以实现硫磺生产的商业化,降低持续的尾矿管理成本,并减轻潜在的环境危害。关于 Cobalt Blue Cobalt Blue 是一家采矿和矿物加工公司,专注于开发西澳大利亚的钴镍精炼厂、新南威尔士的 Broken Hill 钴项目以及再开采机会,以期在矿山废料中寻找全球机会。联系人:Joel Crane 投资者关系/商务经理 电子邮件:Joel.Crane@cobaltblueholdings.com Andrea Roberts
在解决运输部门内的可持续性挑战时,电动汽车(EV)与可再生能源(尤其是太阳能和风能)的整合提出了有希望的解决方案。这项全面的评论深入研究了EV技术的最新进步和趋势,涵盖了关键领域,例如电池创新,充电基础设施,车辆设计和市场动态。精心研究了各种EV技术,包括插电式混合动力电动汽车(PHEV),基于电池电动电动汽车,太阳能电动汽车和太阳能混合动力电动汽车,并特别侧重于太阳能释放混合解决方案的可行性和功效。审查扩展到电池技术,锂离子电池中的进步以及固态和锂 - 硫硫磺电池等新兴化学物质的进步,这通过增强的能量密度,充电效率和成本效益来解决采用EV的障碍。此外,审查审查了充电基础架构的扩展,包括快速充电站,无线充电技术以及整合智能电网的计划,所有这些旨在提供方便,有效的充电解决方案,以使范围焦虑焦虑和增强EV吸引力。经济考虑,包括初始投资,运营储蓄和政府激励措施,与环境福利(例如减少温室气体排放和空气污染)进行了彻底分析。此外,对支持电动汽车的监管和政策框架的批判性检查阐明了未来的政策指示,税收优惠和监管措施。现实世界中的案例研究表明,太阳能混合电动汽车项目的成功实施强调了它们在不同地理区域之间的有效性和多方面影响。总而言之,这篇综述强调了EV技术的最新趋势,强调了太阳能混合电动汽车在实现最少排放和激励可持续运输实践方面的可行性和好处。
Mayman Aerospace Razor VTOL飞机设计具有多角色功能。其专有控制系统可以迅速,安全,有效地运输关键供应,从而在挑战和严峻的环境中增强军事准备和韧性。剃刀飞机还可以配置为扩展小型空对空地或空气向下导弹(例如硫磺或地狱火)的范围,并提供200英里以上。然后,飞机可以将导弹部署以进行最终目标获取,从而增强导弹系统的覆盖范围和精度。垂直启动无需特殊启动系统或基础架构,Razor可以充当ISR,目标名称和启动平台。由于其极高的速度,剃须刀可以迅速拦截无人机。Razor还为昂贵的巡航导弹提供了一种具有成本效益的替代方法。它的迅速,敏捷,AI引导的C2/C3实现了精确的有效载荷或动力学影响交付。这个多功能平台可确保以传统成本的一小部分来确保有效的操作。Razor UAS彻底改变了战场目标智能收集,提供了快速,灵活的数据获取。具有在受限区域部署的VTOL功能,预计的速度最高为500 mph,并且高级监视技术,飞机提供了一个平台,可以通过在高海拔高度携带大型饰品球来获取出色的图像质量。作为一个自我足够的平台,剃须刀可确保立即可靠的情报,从而增强战场决策。这架飞机对于现代战争至关重要。Mayman Aerospace的创始人兼首席执行官David Mayman说:“我们最近的飞行测试成功了100%,我们相信Razor的速度将达到450kts。作为一种多角色,双重使用技术剃须刀已经在改变国防指挥官和平民领导人正在考虑自主VTOL应用的方式。我们是一家由软件驱动的硬件公司,我们的团队一旦梦dream以求就可以达到绩效水平。我们对今年晚些时候的下一套飞行测试感到非常兴奋。”
术语适应气候变化的定义: - 对社区和生态系统的调整,以应对气候变化的不利影响(管理不可避免的)适应能力: - 社会,技术技能和个人和个人和团体(社区)的社会,技术技能和策略(可以针对气候变化造成的影响)。碳信用额或偏移是一个金融单位,代表从大气中取出一吨二氧化碳。碳信用额是由可衡量的温室气体排放量减少的项目产生的。气候: - 指相对较长的时间内天气参数的行为,对于较大的地区,经典期限为30年及以上。气候变化: - 指气候状态的变化长期存在,通常是十年或更长时间。正常气候模式的永久性转移。气候危害: - 这是一种物理过程或事件,具有损害人类健康,生计或自然资源的潜力。气候风险: - 由于气候危害增加而导致的身体损害和经济损失。气候变异性: - 是指平均状态和其他气候特征的波动。全球变暖是指全球表面温度观察到的逐渐升高或预计逐渐升高。这是气候变化的后果之一。温室气体(GHGS)是在热红外范围内吸收和发射辐射能量的气体。在温室气体清单中测得的主要温室气体是二氧化碳(CO2),甲烷(CH4),一氧化二氮(N2O),全氟碳(PFCS),氢氟氟苯碳(HFCS),硫磺六氟二氟化物(Sulfur Hexafluoride)(SFC6)和NITROGEN(NITROGEN)。缓解: - 采取的措施减少气候变化,导致物质/活动(避免无法操纵)的弹性: - 社会生态系统或社区吸收压力并在面对气候变化施加的外部压力的情况下吸收压力并保持功能的能力。天气: - 在相对较小的区域中,每天指的是大气的行为。脆弱性: - 系统/社区接触气候变化的不利影响的程度。
储能对于电网和运输部门的快速脱碳至关重要。[1,2]电池在满足网格上需要短期电力存储的需求并启用电动汽车(EVS)来储存和使用点播能量。[3]然而,通常将制造业的关键物质使用和上游环境影响被视为广泛使用充值电池的缺点。[4,5]生命周期评估(LCA)是一种广泛使用的方法,用于检查大型电池生产,使用和处置和/或回收利用的潜在影响。在其核心上,LCA是量化与产品或服务的直接和间接环境负担相关的方法。[6]这也是一个有用的框架,可以探索提供可比服务的不同技术之间的环境权衡。但是,将LCA应用于电池的原因是从方法论选择到电池制造的主要数据稀缺的各种原因。迄今为止,LCA领域尚未达成共识,即应如何消除电池的环境影响,也没有如何报告结果。研究使用多种系统界限,功能单元,主要数据源(进而在不同级别的谷物级别报告数据)以及生命周期库存,中点和影响类别。这使得不同技术的跨季前者会限制LCA为早期科学研究和技术开发提供反馈循环的能力。Ellingsen等。它也可以限制我们检测和纠正文献中错误的能力;生命周期库存结果通常会因文献中一个或多个数量级而变化,而且大多数评论无法解释差异的根本原因。关于锂离子电池LCA(LIB)LCA的先前审查论文可以归类为三个主要组:识别和降低来源或不确定性/可变性; [7-9]综合结果并确定关键驱动因素以告知进一步的研究; [10,11]以及对改善LCA实践的文献的批判性审查。[12] Sullivan and Gaines [9]回顾了铅酸,镍含量,镍金属氢化物,镍氢,钠硫磺和锂离子电池的生命周期库存估计,并计算了自己的估计值以进行比较;结论的重点是填补关键数据空白的需求。[7]
火箭简史过去的科学和技术。它们是数千年来对火箭和火箭推进的实验和研究的自然产物。最早成功运用火箭飞行基本原理的装置之一是一只木鸟。罗马人奥鲁斯·盖利乌斯的著作讲述了一个名叫阿基塔斯的希腊人的故事,他住在塔伦图姆城,现在是意大利南部的一部分。大约公元前 400 年,阿基塔斯放飞了一只木鸽,让塔伦图姆的居民既困惑又开心。逸出的蒸汽推动了悬挂在电线上的鸟。鸽子利用了作用-反作用原理,直到 17 世纪才被表述为科学定律。大约在鸽子发明三百年后,另一位希腊人,亚历山大的希罗,发明了一种类似的火箭式装置,称为汽转球。它也使用蒸汽作为推进气体。希罗在水壶顶部安装了一个球体。水壶下面的火把水变成蒸汽,气体通过管道流到球体上。球体两侧的两个 L 形管使气体逸出,从而给球体一个推力,使其旋转。 第一批真正的火箭究竟何时出现尚不清楚。早期火箭装置的故事零星地出现在各种文化的历史记录中。 也许第一批真正的火箭是意外事故。 据说公元一世纪中国人有一种由硝石、硫磺和木炭粉制成的简单火药。他们主要在宗教和其他节日庆典中使用火药来燃放烟花。为了在宗教节日期间制造爆炸,他们将混合物装满竹筒,然后将其扔进火中。也许其中一些竹筒没有爆炸,而是从火中滑出,被燃烧的火药产生的气体和火花推动。中国人开始试验装满火药的竹筒。后来,他们把竹管装在箭上,用弓箭发射。很快他们发现,这些火药管可以仅靠气体逸出产生的力量自行发射。真正的火箭就此诞生。英雄引擎
ll-solid-State电池越来越吸引着吸引人的注意力,作为用于消费电子和电动汽车1中应用的下一代储能设备。用无机固体电池(SE)代替了常规电池中易燃的有机液体电解质(SE),并实现了高能电极的使用,从而增强了安全性和高能密度2。实现此类电池的关键因素是具有高离子电导率和出色的电化学稳定性的SES的开发,并且针对锂金属阳极和高压阴极3。虽然高离子电导率显然会降低细胞阻抗,并可能增加阴极复合物4中的活性材料负载,但最近还显示它可以减少锂金属阳极5中机械应力的堆积。几种基于硫化物的无机SES,例如Li 10 Gep 2 S 12(LGPS)6,L 7 P 3 S 11(参考7)和硫磺锂8具有高离子电导率(> 10 ms cm -1),超过了液体电解质6、7、9。然而,硫化物10 - 13的化学和电化学稳定性有限,在空气或水上释放时可能释放14、15是制造和应用的潜在安全问题。相反,许多氧化物SES表现出极好的空气和电化学稳定性11,但它们的离子电导率通常低于硫化物SES 16。如果可以识别出锂运动的结构和化学特征,则可以加速新的快速锂离子导体的发现。到目前为止,仅发现了少数几个氧化物SES(例如,NA超离子导体(NASICON) - 型氧化物17,石榴石18和钙钛矿锂19),并以室温(RT)离子电导率(σRT)为0.1-1-1-1 ms cm-1 cm-1 cm-1-1-1-1-1 rt)。在硫化物中,找到超离子导体的重点是晶体结构,这些晶体结构在几乎能量等效的位点之间提供了低障碍离子途径20。这导致了这样的原理:与封闭式结构相比,具有以身体为中心的立方体(BCC)排列的材料更可取,因为这种BCC布置允许通过低活化能的面部共享四面体位点锂迁移。
ITHIUM-ION电池(LIBS)是为便携式电子和电动汽车提供动力的主要能量存储技术。但是,它们目前的能源密度和成本可能不满足不断增长的市场需求1 - 3。电池500财团提出需要达到500 WH kg-1的细胞级特异性能量,而电动汽车4的包装级成本低于100美元(kWh)-1。因此,探索新的电池化学物质超出了传统的LIB系统,这是必要的,紧急的5、6。表1比较了几种常用的充值电池系统的重量能量密度,相应的驾驶距离和成本,例如铅酸,镍卡达米(NI – CD),镍 - 金属氢化物(NI-MH),Libs,Libs,Advanced Libs and Advanced Libs and Lith-Sulfur(Lith-Sulfur(Libs))。当前的LIB具有150–250 wh kg-1的细胞水平能量密度为电动汽车提供300至600 km的驱动器范围(例如,特斯拉电动汽车中的LIBS具有〜250 WH kg-1的细胞级能量密度为〜250 WH kg-1),可实现500英里驱动器驱动器的频率,可用于合理驱动距离尺寸,以使距离型号均可合理驱动器尺寸尺寸。这是由于相对较低的容量(≤220mAh g-1)和常规锂过渡金属氧化金属(LMO)阴极的重量,这限制了Li Metal-LMO全细胞(未来LIBS)的能量密度几乎不超过500 WH kg-1。由于硫阴极的多电子氧化还原反应,li – s bateries提供了高理论特异性能量为2,567 WH kg-1,而全细胞级别的能量密度为≥600WH kg-1。尽管出色,硫磺7的低成本和丰度,Li – S电池为远程电动汽车8的下一代电池系统提供了巨大的潜力。已经做出了大量的研究工作,以解决LI – S电池中的物质挑战,以增强电化学的表现。这些努力包括使用多孔碳/极性宿主来减轻9-11,三维阴极的多硫化物溶解,以增强电子/离子电导率和可容纳体积的变化12、13,宿主和人造固体电解质对称间相设计,用于保护Li anodes 14、15,以及对电动机,二线材料和现有的16型固定器和现有的固定剂和现有的固定材料和现有的16型固定剂,现有的固定剂和现有材料。
在发育过程中,大鼠脑髓磷脂亚菌群中描述了含有含有神经酰胺半乳糖基转移酶的酶UDP-半乳糖糖羟基脂肪酸的定位和活性。其他脂质合成酶,例如脑硫磺硫酸光转移酶,UDP-葡萄糖 - 葡萄糖 - 陶瓷葡萄糖基转移酶和CDP-胆碱-1,2-二酰基甘油胆碱磷酸酶磷酸酶也已在肌蛋白亚纤维上和微晶片中进行比较。纯化的髓磷脂被异icnic蔗糖密度梯度离心分离。四个髓磷脂亚馏分分别在0.55 m-(浅绿色蛋白级分),0.75 m-(重膜蛋白级分)和0.85 m-核(膜馏分)和一个颗粒中,分离并纯化。在所有年龄段,在重肌蛋白馏分中发现了总髓磷脂蛋白的70-75%,而在轻膜林馏分中恢复了2-5%的蛋白质,而在膜分数中约为7-12%。大多数半乳糖基转移酶与重膜蛋白和膜分数有关。所研究的其他脂质合成酶似乎不与纯化的髓磷脂或髓磷脂亚菌群相关,而是在微体积 - 膜分数中富集。在发育过程中,当动物大约20天大然后下降时,微粒体半乳糖基转移酶的特异活性达到了最大值。相比之下,在重膜蛋白和膜级分中,半乳糖基转移酶的特异活性比16天大的动物中微粒体膜高3-4倍。酶在重绿色蛋白级分中的特定活性随着年龄的增长而急剧下降。对各个年龄段的重髓蛋白和髓磷脂亚折原的化学和酶学分析表明,膜级分所含的蛋白质与脂质有关,而不是重膜蛋白分数。与胆固醇相比,膜级分在磷脂中也富集,并含有2':3'-循环核苷酸3'-磷酸水解酶,而与重蛋白质和轻质蛋白质级别相比。膜馏分缺乏髓磷脂碱性蛋白和蛋白质蛋白,并富含高分子量蛋白。在髓鞘化刚刚开始的时候,半乳糖基转移酶在重膜蛋白和膜级分中的特定定位表明它可能在髓鞘化过程中起作用。
主要产品:涂料和油墨添加剂:Texanol™、Optifilm™、酮、酯、乙二醇醚、醇溶剂、EastaPure™、纤维素、聚酯、聚烯烃基聚合物和 Tetrashield™ 保护性树脂体系胶粘剂树脂:碳氢化合物树脂(Piccotac™、Regalite™、Eastotac™、Eastoflex™、Aerafin™)轮胎添加剂:Crystex™ 不溶性硫磺、Santoflex™ 抗降解剂和 Impera™ 高性能树脂护理化学品:烷基胺衍生物、有机酸及衍生物、纤维素酯、Banguard™ 杀菌剂特种液体:Eastman Therminol™ 传热流体、Skydrol™、涡轮机油、SkyKleen™、Marlotherm™动物营养:有机酸及衍生物、有机酸基溶液、氯化胆碱、Eastman Enhanz™ 主要市场与应用: 运输:橡胶轮胎制造中使用的不溶性硫、抗降解剂和高性能树脂、OEM 和修补涂料中使用的聚合物和溶剂、航空液体 消耗品:卫生和包装胶粘剂中使用的树脂、涂料添加剂以及图形艺术和油墨中使用的聚合物 建筑:建筑涂料中使用的溶剂、建筑胶粘剂和室内地板用树脂 食品、饲料与农业:土壤熏蒸剂、动物饲料的肠道健康、防腐、杀菌剂和植物生长调节剂 工业化学品与加工:化学过程和可再生能源的传热流体 能源、燃料与水:水处理用的烷基胺衍生物 消费/医疗耐用品:涂料、木材和工业应用中使用的聚合物和溶剂 个人护理/健康与保健:个人护理应用和水处理中使用的胺基中间体 主要原材料:醇、烷基胺、氨、苯胺、甲基苯乙烯、苯、C9 树脂油、CS2 烧碱、环氧乙烷、甲酸、松香、重质燃料油、甲基异丁基酮、环烷工艺油、新多元醇酯、硝基苯、戊二烯、磷、丙烷、丙烯、硫、苯乙烯、木浆 主要竞争对手: 涂料和油墨 添加剂:巴斯夫欧洲公司、陶氏公司、Oxea、塞拉尼斯公司 粘合剂树脂:埃克森美孚公司、可隆工业公司、赢创工业公司 轮胎添加剂:东方炭素化学株式会社、四国化成株式会社 护理化学品:巴斯夫欧洲公司、陶氏公司、亨斯迈公司、科迪华公司、Agro-Kanesho 株式会社、拜耳 特种液体:陶氏公司、埃克森美孚公司 动物营养:巴斯夫欧洲公司、Perstorp Holding AB、鲁西化工集团、肥城酸性化学品