Boronia boliviensis(Bolivia Hill Boronia)是一种传统上接受的物种(Chah 2008)(Chah 2008),北谷(Valvatae)系列Erianthae(Duretto and Ladiges 1999)。威廉姆斯和亨特(Williams and Hunter,2006年)将其描述为“截至1.5(–2.2)M高的灌木,高,有气味的枝; brandlet子,覆盖着非常短的,连续的,多角质的黄色星状头发,随着年龄的增长而变得无毛。叶子大部分是7-11个传单,很少有一些叶子上有1-5个传单(尤其是在开花的树枝上); Rachis 2–12(–20)毫米长,连接,宽8-15毫米,翅膀狭窄,Rachis Wings平坦或弯曲; leaflets narrow-elliptic, sessile, 3.8–9 mm long, 0.5– 1.5 mm wide, apex acute to sub-obtuse, broadest above the middle, margins entire and closely revolute, rarely only recurved, upper surface deep green with a sparse indumentum of stellate hairs or ± glabrous, the surface and margin dotted with large, sunken oil glands, lower surface often hidden by revolute边缘,但明显苍白时,通常无毛;叶柄长1-3毫米。花序腋窝,1-3朵花; prophylls unigriate;花梗1.5–2毫米长;花梗长2-3毫米。花萼裂片深红色,窄叶,急性或渐尖,长2.5-3.8毫米,宽1-2毫米,不久的是毛茸茸的毛茸茸。花瓣粉红色,长4-9毫米,宽3–4毫米,芽瓣,芽中的瓣膜,很快是静态的,无毛,或几乎是精美的简单头发
更多类似石墨烯的2D系统,例如Xenes和Xanes(其中x =硅,德语等),4 - 6个过渡金属二分法(例如,MOS 2,WS 2,Mose 2,WSE 2),7,8六角硼硝酸盐,9 mxenes(例如,过渡金属碳化物和硝酸盐),10个黑磷,11和2d钙钛矿12,13已合成。其中,硅纳米片由于与当前基于SI的纳米技术的预期兼容性而引起了极大的关注。硅纳米片在石墨烯类似硅烯之间存在分歧,该石墨烯类似硅由混合的SP 2 /SP 3-杂化硅原子组成,14和氢末端的石墨烯的类似物,所谓的硅烷,SP 3-氢化硅原子。15作为SP 3-杂交对硅的有利,16硅不稳定,因此仅在底物上外恋生长,例如,AG(111)或IR(111)。17 - 22通过在低温下用浓盐酸从ZINTL二相钙(CASI 2)从ZINTL相(CASI 2)的钙阳离子去钙阳离子来制备更稳定的硅硅烷(氢终止的硅质,SINS-H)。6 Sins-H具有独特的电子,机械和光学特性。根据理论研究,SINS-H是一种半导体材料23,具有应变带隙,24,25,而其原子
摘要:本研究的重点是三个参数之间的相关性:(1)石墨粒径,(2)石墨与氧化剂的比率(KMNO 4),以及(3)石墨与酸(H 2 SO 4和H 3 PO 4)的比率(H 2 SO 4和H 3 PO 4),具有氧化物氧化物的性质,结构和特性(GO)。相关性是一个挑战,因为由于系统粘度的变化,这三个参数几乎无法彼此分开。石墨颗粒越大,GO的粘度越高。将石墨与KMNO 4的比率从1:4到1:6降低,通常会导致更高的氧化程度和更高的反应产率。但是,差异很小。除最小的颗粒以外,将石墨与酸 - 酸体积比从1 g/60 mL增加到1 g/80 ml,降低了氧化程度,并稍微降低了反应产率。然而,反应的产率主要取决于水的纯化程度,而不是反应条件。GO热分解的较大差异主要是由于块状粒径,而其他参数则较小。
在很大程度上,纳米级的流体运输在很大程度上是维珍领土。近年来,碳纳米管中的快速流[1-4]等新现象已经发布,或者在碳纳米管中的特殊离子转运[5],硝酸硼纳米管中的大渗透力[6]或纳米氧化石烯和石墨烯氧化物的高渗透[6] [7-9]。这些现象中的许多现象仍有合理化[10,11]。尽管在理论和数值方面进行了详尽的探索,但仍然缺乏实验输出,因为该领域的研究非常具有挑战性。然而,对纳米通道内流体运输的系统性理解,尤其是某种神秘的碳材料,是获得对纳米级级别发挥作用机制的基本见解的先决条件。的确,这些材料的流体特性对社会问题(如淡化和能量收集)产生了影响,这确实使许多希望寄希望了,因此对于确定其特定行为的物理起源至关重要。在这封信中,我们探索各种尺寸的个体碳纳米管(CNT)内部的离子传输,通常在数十个纳米范围内。,我们尤其将重点放在离子电导率及其对盐浓度的依赖性以及离子电流的波动上。我们报告了低盐浓度下电导的“不寻常”缩放行为,可以用碳表面上的氢氧化物吸附来解释。单个纳米管和实验设置。- 单个跨膜纳米管设备由此外,当前噪声的测量值强调了噪声幅度对表面电荷的密切依赖性,这表明表面吸附在离子传输的低频行为中起关键作用。结果显示,结果与硝酸硼纳米管(BNNT)的响应有很大不同,后者表现出相同的Crys-Salographich,但截然不同。
聚焦离子束 (FIB) 装置是一项关键技术,在纳米技术领域已得到广泛应用,可用于局部表面改性、掺杂、原型设计以及离子束分析。这种 FIB 系统的主要组成部分是离子源及其可用的离子种类 1 。目前,大多数仪器都采用 Ga 液态金属离子源 (Ga-LMIS),但对其他离子种类的需求仍在增加 2 。一种非常受关注的元素是硼,它是元素周期表中最轻的元素之一,在微电子学中已得到广泛应用,可通过注入或扩散在硅中进行 p 型掺杂 3 。人们长期以来一直对硼在 LMAIS 中的应用感兴趣,并为此付出了很多努力,通过 FIB 对材料进行局部改性,从而避免 B 宽束注入和光刻步骤。硼有两种稳定同位素,质量为 10 u(19.9% 天然
无需预活化即可对复杂分子进行功能化,从而可以在合成序列的后期引入功能团。[1] 直接 C @ H 硼化尤其令人感兴趣,因为硼功能团可以通过各种各样的转化进行进一步修饰,包括 Suzuki 偶联反应、胺化、羟基化和卤化,从而提供结构和功能的分子复杂性。[2] 对于该应用至关重要的是可以控制反应的选择性,这对于空间和电子失活的 C @ H 键尤其具有挑战性。最近,已经探索了利用底物和金属配合物配体之间的超分子相互作用来控制选择性,[3] 并且这导致了用于电子(未)活化底物的选择性间位或对位 C @ H 硼化的催化剂。 [4] 然而,邻位选择性 C @ H 硼化仅报道用于电子活化芳烃,例如胺、[5] 醇、[6] 或硫醚取代的 [7] 芳烃。二级芳香酰胺是药物、农用化学品和精细化学品中非常常见的结构单元,[8] 因此,此类化合物的邻位选择性 C @ H 硼化将非常有趣。然而,此类化合物的直接邻位 -C @ H 硼化极具挑战性。对于常见的铱-
摘要:归因于独特的拓扑复杂性和优雅的美丽,Borromean系统引起了强烈的关注。然而,目前,硼有机聚合物的建造仍然是一个挑战。为了应对这一巨大的挑战,我们开发了一种超分子 - 诱导的方法来制造硼链链接的有机聚合物。尼古拉德式构建块,具有线性脱氧基础块,构建两个稀有的共价有机框架(COFS),具有高结晶度和坚固的结晶度和坚固的结晶度和坚固型,犹太人选择的三角锥体构件(1,3,5- tris(4-氨基苯基))的溶剂热凝结反应。 结构完善揭示了纠缠2D的成功形成! 2D硼阵列结构。 这两个COF都是微孔的,因此证明了气体分离的潜力。 成功合成了前两个Borromean连接的有机聚合物,铺平了大道,将超分子合成驱动的方法扩展到其他构件和拓扑,并扩大了COF的家庭和范围。犹太人选择的三角锥体构件(1,3,5- tris(4-氨基苯基))的溶剂热凝结反应。结构完善揭示了纠缠2D的成功形成!2D硼阵列结构。这两个COF都是微孔的,因此证明了气体分离的潜力。成功合成了前两个Borromean连接的有机聚合物,铺平了大道,将超分子合成驱动的方法扩展到其他构件和拓扑,并扩大了COF的家庭和范围。
Brain Driver BCI赛车游戏用于练习化身(虚拟赛车)的控制(图1C)。Braindriver游戏的实际轨道包括四个不同的区域。有左右曲线的区域,有街道灯打开或关闭路灯的区域。要保持车辆的最大速度,飞行员必须使用4级BCI(例如,左或右臂运动图像或权利转弯,脚“大灯”,并放松“无控制”)。如果提出了不正确的命令,则抑制车辆,这对飞行员表现出明显的负面视觉反馈,以实现学习和尝试校正策略。发出命令后,指示飞行员立即放松,以允许“无控制”,或者作为继续维护
我们报告了通过二维半导体WS 2的范德华异质结构的能量转移机理和具有不同层间距离的石墨烯,这是通过六角硼硝化硼(HBN)的间隔层实现的。我们在0.5 nm至5.8 nm(0-16 HBN层)之间记录了层间距离处的光致发光和反射光谱。我们发现能量转移由光锥外部的状态支配,这表明了f的转移过程,并在0.5 nm的层间距离下右手过程的额外贡献。我们发现,可以使用最近报道的热载荷载载流子的f ister传递速率进行定量描述发光强度对层间距离的测量依赖性。在较小的层间距离处,实验观察到的转移速率超过了预测,此外,取决于过量的能量以及激发密度。由于f”机制的转移概率取决于电子孔对的动量,因此我们得出结论,在这些距离上,转移是由非省力的荷载载流子分布驱动的。
在生物传感器技术中使用二维(2D)材料已革命 - 领域。像石墨烯,过渡金属二核苷(MOS 2和WS 2)这样的材料,六角硼(H-BN)和黑磷具有纳米级厚度和不同的物理特性,可能会大大增强生物传感器的性能[1]。石墨烯具有特殊的电导率和机械强度,以其在生物传感器中的多功能性而广泛认可。其平面结构和高电子迁移率提高了敏感性和特定的特定性,使其成为理想的组成部分[2]。过渡金属二分法源(例如MOS 2和WS 2)由于其分层结构而具有独特的半导管特性。这些材料可以与光线和电场相互作用,使其特别适合需要精确的电特性的生物传感器应用[3]。此外,研究增强了2D材料在癌症生物传感器中的作用:一种用于肺癌检测的MOS 2 /CU 2 O传感器[4],PEC生物传感器的食管癌[5]和用于广泛癌细胞检测的实验室芯片设计[6]。