将杂原子引入石墨烯是调节其催化,电子和磁性特性的强大策略。与氮(N)和硼(B)掺杂的石墨烯的变化时,目前缺乏碳(C)网格中的一种可扩展的企业过渡金属原子的方法,从而限制了模型系统研究的应用兴趣。这项工作提出了生长的合成,从而使钴(CO)与Ni(111)底物上石墨烯中的镍(Ni)原子一起掺入。单个原子在Graphene双空缺中共价稳定,相对于C原子,CO负载范围为0.07至0.22%,可通过合成参数控制。结构表征涉及可变温度的扫描隧道显微镜和AB IN-TIO计算。将共同编码的层转移到透射电子显微镜网格上,通过扫描透射电子显微镜和电子能量损耗光谱法进行了稳定性。此方法对旋转,气体传感,电化学和催化的应用有望,以及对类似金属的石墨烯掺入的潜在扩展。
最近,新兴的量子材料 [1] 实现了以前不可能实现的功能,目前正在彻底改变先进量子技术的科学发展和创新。它的出现推动了先进量子光子学、先进通信、量子计算、先进光电器件等的发展 [2]。它为探索许多新的尖端科学和可能性提供了机会。在其众多可能的应用中,当前需要的一项基本发展是超快先进无线通信,从量子材料中寻找其解决方案是一个新的视角和潜在领域。当今快速发展的社会需要高数据速率、超低延迟、更好的频谱效率和在更高频段工作的设备。为了解决这个问题,数据速率需要达到每秒兆兆比特 (TBPS) 的数量级,从而导致新兴的第六代 (6G) 网络,这可以通过将操作频段推向潜在的太赫兹 (THz) 范围来实现 [3]。石墨烯是所有二维 (2D) 材料之母,它的发现获得了诺贝尔奖,从那时起,许多二维材料被发现。 2D 材料是原子级薄的材料,包括石墨烯、过渡金属二硫属化物 (TMDC),例如 MoS 2 [6]、WS 2 、MoSe 2 [7]、WSe 2 [8]、六方氮化硼 (h-BN)、磷烯、硅烯(2D 硅)、锗(2D 锗)、硼烯(2D 硼)和 MXenes(2D 碳化物/氮化物)[9]。由于 2D 材料为原子级薄,且其独特的电子和光学特性源于量子限制效应 [9],因此被称为“量子材料” [1]。可调带隙、大载流子迁移率和增强的光物质相互作用等特性使 2D 材料成为太赫兹应用的有希望的候选材料,可用作发射器、探测器、调制器和光源。其独特的光-物质相互作用源于激子能量动力学,这种动力学仅因二维结构中的量子限制而存在,由于其与太赫兹频率的共振,透射率增强。尽管石墨烯具有非线性光学行为、高光学透明度、高载流子迁移率和表面电导率等非凡特性 [5],使其适用于太赫兹应用,但它受到空气污染性质、零带隙和不稳定的离域 π 电子的限制,而这些限制在 TMDC 等其他二维材料中并不存在。此外,TMDC 的高调制效率推动了使用石墨烯制造异质结构的创新新趋势 [5]。这种异质结构结合了石墨烯的特性,同时克服了其缺点,从而提供了进一步增强和更好的性能 [10]。有关这方面的更多细节将在演讲中讨论和描述。
使用粘合带的机械去角质进行了在六角硼(HBN)的天然晶体上进行的(图S1面板A和C),石墨烯(图s1 b)和石墨(图s1 d)在氧化硅晶片(290nm)上。h-bn薄片被用作顶部(图s1 a)和底部(图s1 c)介电层以及15 nm石墨片。通过手写笔轮廓仪中的测量确认了厚度。在异质结构的堆叠过程中,制造了聚碳酸酯(PC)膜并沉积在聚二甲基硅氧烷(PDMS)上。使用不同层的自然边缘对准两种材料的晶体方向,将顶部HBN薄片捡起50-60°,并在190°的石墨烯单层上沉积。之后,清洁HBN/石墨烯异质结构,通过在氯仿中冲洗几分钟来去除聚碳酸酯膜。使用相同的技术将HBN底部薄片沉积到石墨后门上。最后,堆叠的HBN顶部和石墨烯片以类似的方式捡起,并沉积在HBN底部和石墨堆上,并与天然边缘对齐。
TEAl : 三乙基铝 ( C 2 H5 ) 3 Al TMGa : 三甲基镓 ( CH 3 ) 3 Ga TMIn : 三甲基铟 ( CH3 ) 3 In DETe : 二乙基碲 ( C 2 H5 ) 2 Te DEZn : 二乙基锌 ( C 2 H5 ) 2 Zn CP 2 Mg : 双(环戊二烯基)镁
1 - G. Fazio,L。Ferrighi,D。Perilli,C。DiValentin,“掺杂石墨烯的计算电化学作为燃料电池中的电催化材料”,《国际量子化学杂志》,2016,116,116(22),1623-1640。2 - C. Ronchi,M。Datteo,D。Perilli,L。Ferrighi,G。Fazio,D。Selli,C。DiValentin,π“石墨烯中碳单流量的磁性通过混合密度功能计算计算”,《物理化学杂志》,《杂志(联合第一位作者)3 - L. Ferrighi,D。Perilli,D。Selli,C。DiValentin,“缺陷的石墨烯与Cu或Pt(111)表面之间的界面上的水”,ACS应用材料和互动界面,2017,9(35),29932-299941。4 - D. Perilli,D。Selli,H。Liu,E。Bianchetti,C。DiValentin,“ H-BN有缺陷的层作为巨型N-供体宏观细胞,用于CU ADATOM捕获来自基础金属底物的Cu Adatom诱捕”,《物理化学杂志》,2018,2018,122(41),23610-23610-2610-23610-23610-23610-23610-2362222。(第一作者)5 - T.H.nguyen,D。Perilli,M。Cattelan,H。Liu,F。Sedona,N。A.Fox,C。DiValentin,S。Agnoli,“对石墨烯和六角硼硼之间平面异质结构的单步生长的微观见解”,Nano Research,2019,12(3),675-682。6 - D. Perilli,D。Selli,H。Liu,C。DiValentin,“金属载量和金属硫化有缺陷的H bn的水计算电化学”,Chemsuschem,2019,12,195,1995-2007。(第一作者)7 - H. Liu,D。Perilli,M。Dolce,C。Di Valentin,“对WSE 2X S 2(1-X)单层的NA吸附的洞察:一项混合功能研究”,《混合功能调查》,《杂志》物理学:冷凝物质:2020,32,32,395001。8 - S. Fiori,D。Perilli,M。Panighel,C。Cepek,A。Ugolotti,A,A,Sala,H。Liu,G。Comelli,C。Di Valentin,C。Africh,“'Inside Out Out'成长方法,用于高质量硝基化的石墨烯的'Inside Out'成长方法”,碳,碳,碳,2021,171,171,171,171,704-704-710。
摘要作为现代社会中通信,信息和感知的无线解决方案,电磁波(EMW)为人们日常生活质量的提高做出了巨大贡献。同时,EMWS产生电磁污染,电磁干扰(EMI)和射频(RF)信号泄漏的问题。这些情况导致对有效的EMI屏蔽材料的需求很高。要设计EMI屏蔽产品,必须在电磁屏蔽效率,屏蔽材料的厚度,耐用性,机械强度,体积和重量减小以及弹性之间实现折衷。由于其阻断EMW,柔韧性,轻质和化学电阻率的效果,石墨烯已被确定为有效的候选材料,以进行有效的EMI屏蔽。在此,我们审查了研究各种基于石墨烯的复合材料作为潜在的EMI屏蔽材料的研究,重点是基于石墨烯和银纳米线的复合材料,原因是它们的高EMI屏蔽效率,低产量和有利的机械性能。
当前研究的目的是解决两个重大的环境清理问题。第一个涉及回收用过的锂离子电池(LIB),第二个涉及在水中发现的抗生素的降解。可以从也已与硼(BRGO)掺杂的用过的Libs合成还原的氧化石墨烯(RGO)。当BRGO和可见的活性BI 2 WO 6(BWO)混合在一起时,形成纳米复合材料(BWO/BR)。结构,形态和光谱特征证实了BRGO,BWO和BWO/BR纳米复合材料的序列。抗生素四环素盐酸(TCH)和环丙沙星(CIP)已通过所有三种新制成的材料进行了测试,以进行光催化降解。与BRGO结合后,发现将BWO(2.73 eV)的带隙降低至2.22 eV。在可见光下,BWO/BR表现出升高的TCH降解(93%),发现在存在阳光下会增加(95%)。在存在BWO/BR的情况下,据报道,CIP的降解分别为72%,95%和97.5%,在紫外线,可见和阳光下分别为。在存在BWO/BR的情况下,检查了反应条件,例如pH,催化剂和初始浓度的量,以降解TCH和CIP。已经发现,pH 6和8分别是TCH和CIP的理想选择。还进行了药物废水中TCH和CIP降解的研究;在存在BWO/BR和可见光的情况下,降解效率分别确定为69%和72%。在暴露于可见光之前和之后,在90分钟之前和之后,检查了在存在BWO/BR的情况下检查所有大肠杆菌,单核细胞增生菌,伤寒链球菌和金黄色葡萄球菌的所有抑制区域,在此期间,观察到接近零的抑制区域。进行了使用液相色谱 - 质谱法(LC-MS)进行研究以鉴定TCH和CIP降解的中间产物。
摘要:微通道热沉在从不同电子设备的小表面积上去除大量热流方面起着至关重要的作用。近年来,电子设备的快速发展要求这些热沉得到更大程度的改进。在这方面,选择合适的热沉基板材料至关重要。本文采用数值方法比较了三种硼基超高温陶瓷材料(ZrB 2 、TiB 2 和 HfB 2 )作为微通道热沉基板材料的效果。利用有限体积法分析了流体流动和传热。结果表明,对于任何材料,在 3.6MWm -2 时热源的最高温度不超过 355K。结果还表明,HfB 2 和 TiB 2 比 ZrB 2 更适合用作基板材料。通过在热源处施加 3.6 MWm -2 热通量,在具有基底材料 HfB 2 的散热器中获得的最大表面传热系数为 175.2 KWm -2 K -1。
ICP-MS被认为是硼同位素分析的强大技术。对于最苛刻的古透明应用,高分辨率的多策略ICP-MS(MC-ICP-MS)通常是选择的技术,可为硼提供精确和准确值,降低到0.2 - 0.4‰。6个四极杆ICP-MS(Q-ICP-MS),有时也将与激光消融结合使用,用于各种应用程序,对精确性和准确性的要求较小。然而,Q-ICP-MS也可以通过碰撞阻尼来消除常规测量中的许多噪声,从而产生接近理论上可能的精度的精确度。7这需要使用适当的仪器硬件和分析条件,如本申请注释中进一步讨论。因此,尽管本质上是一种顺序的仪器,但Q-ICP-MS提供的性能可以接近MC-ICP-MS。即使对于苛刻的应用程序,也可以获得足够的精度,并且分析适合于多策略仪器成本的一小部分。具有Q-ICP-MS的用途更广泛,并且不仅用于同位素比测量值,因此对同位素比率能力的欣赏可以将高质量的同位素比分析带入具有不同分析需求的实验室的范围。虽然Q-ICP-MS已成功用于硼同位素比分析8,但碰撞阻尼很少在已发表的文献中使用,因此发表的结果可能并不能反映Q-ICP-MS的真正潜力。本研究的目的是在充分利用仪器的功能时,使用Perkinelmer的Nexion®ICP-MS研究Q-ICP-MS的性能。
尽管其重要性,但迄今为止缺乏散装H-BN热导率的复杂理论研究。在这项研究中,我们使用第一原理预测和玻尔兹曼传输方程在大量H-BN晶体中进行了热导率。我们考虑三个声子(3PH)散射,四弹子(4PH)散射和声子重归于。对于室温下的平面内和平面外向,我们的预测热导率分别为363和4.88 w/(m k)。进一步的分析表明,4PH散射降低了导热率,而声子重质化会削弱声子非谐度并增加导热率。最终,平面和非平面外导导率分别显示出有趣的t 0.627和t 0.568依赖关系,与传统1/t关系远离偏差。