最近,新兴的量子材料 [1] 实现了以前不可能实现的功能,目前正在彻底改变先进量子技术的科学发展和创新。它的出现推动了先进量子光子学、先进通信、量子计算、先进光电器件等的发展 [2]。它为探索许多新的尖端科学和可能性提供了机会。在其众多可能的应用中,当前需要的一项基本发展是超快先进无线通信,从量子材料中寻找其解决方案是一个新的视角和潜在领域。当今快速发展的社会需要高数据速率、超低延迟、更好的频谱效率和在更高频段工作的设备。为了解决这个问题,数据速率需要达到每秒兆兆比特 (TBPS) 的数量级,从而导致新兴的第六代 (6G) 网络,这可以通过将操作频段推向潜在的太赫兹 (THz) 范围来实现 [3]。石墨烯是所有二维 (2D) 材料之母,它的发现获得了诺贝尔奖,从那时起,许多二维材料被发现。 2D 材料是原子级薄的材料,包括石墨烯、过渡金属二硫属化物 (TMDC),例如 MoS 2 [6]、WS 2 、MoSe 2 [7]、WSe 2 [8]、六方氮化硼 (h-BN)、磷烯、硅烯(2D 硅)、锗(2D 锗)、硼烯(2D 硼)和 MXenes(2D 碳化物/氮化物)[9]。由于 2D 材料为原子级薄,且其独特的电子和光学特性源于量子限制效应 [9],因此被称为“量子材料” [1]。可调带隙、大载流子迁移率和增强的光物质相互作用等特性使 2D 材料成为太赫兹应用的有希望的候选材料,可用作发射器、探测器、调制器和光源。其独特的光-物质相互作用源于激子能量动力学,这种动力学仅因二维结构中的量子限制而存在,由于其与太赫兹频率的共振,透射率增强。尽管石墨烯具有非线性光学行为、高光学透明度、高载流子迁移率和表面电导率等非凡特性 [5],使其适用于太赫兹应用,但它受到空气污染性质、零带隙和不稳定的离域 π 电子的限制,而这些限制在 TMDC 等其他二维材料中并不存在。此外,TMDC 的高调制效率推动了使用石墨烯制造异质结构的创新新趋势 [5]。这种异质结构结合了石墨烯的特性,同时克服了其缺点,从而提供了进一步增强和更好的性能 [10]。有关这方面的更多细节将在演讲中讨论和描述。
主要关键词