摘要 :脑内神经递质多巴胺 (DA) 的含量异常与帕金森病、阿尔兹海 默症等神经系统类疾病的发生发展密切相关,精准、实时监测其脑 内含量可作为临床诊疗的重要参考。电化学分析法具备成本低、响 应快、可实现体内实时监测等优势。然而,脑内复杂环境中蛋白吸 附、多物质共存等因素会极大干扰多巴胺的定量分析,这对电极的 灵敏度、选择性和稳定性提出了极高的要求。因此,研发出满足要 求的电极材料是实现多巴胺电化学检测临床应用的关键。掺硼金刚 石 (BDD) 电极生物相容性好、背景电流低、电势窗口宽、抗吸附性 强、化学稳定性高,相较于易团聚、易脱落而失效的金属纳米颗粒 或电阻较大的高分子材料, BDD 电极更具潜力解决上述多巴胺检测 的难点问题。然而, BDD 电极虽能有效抵御蛋白吸附,但在多巴胺 的选择性检测方面存在不足: BDD 电极表面缺乏能够高灵敏度、高 选择性检测多巴胺分子的官能团。因此,在保持 BDD 本征特性的基 础上,系统研究 BDD 电极表面改性与功能化修饰对电化学检测多巴 胺的选择性、灵敏度和稳定性的影响机理,是 BDD 电极实现临床应 用的关键。基于此,本论文从 BDD 膜电极的功能性改性与修饰到 BDD 微电极体内检测,系统研究了 BDD 膜电极在多巴胺电化学检测 中的作用机理,揭示了 BDD 电极界面性质对多巴胺分子氧化过程的 影响规律,所得具体结论如下: (1) 针对 BDD 电化学活性较低的问题,采用高温溶碳刻蚀和滴 涂修饰方法,在 BDD 电极表面刻蚀纳米孔洞并修饰 Nafion 选择性透 过膜( NAF ),制备了 Nafion 修饰的多孔 BDD 复合电极 NAF/pBDD ; 研究了该复合电极对多巴胺的电化学检测机理,揭示了 NAF/pBDD 复合电极比 BDD 电极具有更多活性位点的原因,同时探究了 Nafion 膜对多巴胺和抗坏血酸的作用机制;该电极针对多巴胺的检测限 (42 nM) 和检测线性范围 (0.1 ~ 110 μM) 相较于 BDD 均得到了有效改善。 (2) 针对 BDD 电极对多巴胺选择性较弱的问题,在 pBDD 表面 修饰活性更高的纳米炭黑颗粒 (CB) ,制备了 NAF-CB/pBDD 复合电 极,研究了炭黑颗粒的加入对主要干扰物抗坏血酸 (AA) 电化学响应 的影响机理,揭示了该电极在高浓度、多干扰物并存环境下对多巴 胺的选择性检测机制。结果表明,该电极可有效将干扰物抗坏血酸 的氧化电位提前以减少对多巴胺信号的干扰,检测限 (54 nM) 和检测
摘要:碳硼烷已成为硼中子俘获疗法 (BNCT) 中最有前途的硼剂之一。在此背景下,体内研究尤为重要,因为它们提供了有关这些分子生物分布的定性和定量信息,这对于确定 BNCT 的有效性、确定其定位和(生物)积累以及其药代动力学和药效学至关重要。首先,我们收集了用于体内研究的碳硼烷的详细列表,考虑了碳硼烷衍生物的合成或使用脂质体、胶束和纳米颗粒等递送系统。然后,确定了每项研究中采用的配方和癌症模型。最后,我们研究了与碳硼烷检测有关的分析方面,确定了文献中用于离体和体内分析的主要方法。本研究旨在确定碳硼烷在 BNCT 中使用现状和缺点,确定未来应用的瓶颈和最佳策略。
TO THE EDITOR: High dose chemotherapy followed by autologous stem cell transplantation (ASCT) has been considered the standard of therapy for younger fi t patients with newly diagnosed multiple myeloma (MM), since several randomized trials demonstrated a survival bene fi t for ASCT compared to conventional chemother- apy, even in the era of novel induction triplet and quadruplet therapy regimens [ 1 – 3 ].在高剂量的Melphalan后,需要收集和重新收集2×10 6 CD34 +细胞/kg,以确保在ASCT之后进行足够的造血重建。此外,在第一次复发时,可以在第一线治疗或挽救ASCT上进行多个骨髓瘤患者的显着比例,因此最佳目标是收集至少4×10 6 CD34 +细胞/kg [4]。趋化因子受体拮抗剂plerixafor通常按需用作动员不良的患者的营救[5]。daratumumab是一种人IgG单克隆抗体,其靶向克隆等离子体细胞,具有直接肿瘤和免疫调节的作用机制[6]。在II期Grif Fif Fif Fife试验中,首先研究了基于Daratumumab的组合诱导疗法对符合移植有资格的新诊断的MM患者的临床效率和安全性[7]。In the phase III CASSIOPEIA study, daratumumab plus bortezomib, thalidomide and dexamethasone (D-VTd) showed a signi fi cantly improved progression free-survival (PFS) and MRD-negativity rate compared to VTd and, currently, D-VTd represents the standard of care in Europe for newly diagnosed transplant eligible MM patients [ 8 ].daratumumab暴露与较低的中位干细胞产量和更频繁的plerixa有关,而没有对ASCT后造血干细胞重新机构产生重大影响[9]。daratumumab靶标也在CD34 +造血祖细胞上,众所周知,动员的CD34 +细胞对于ASCT至关重要。daratumumab可能参与CD34 +细胞上的CD38表达,可能会影响动员动力学和谱系 - 特异性祖细胞增殖能力。考虑到炎症过程中CD38在促进白细胞运动中的作用,daratumumab可能会通过骨骨髓微环境的附庸内皮来干扰CD34 +干细胞的尿症,从而阻止其在动员信号后的外围血液中的传播[10]。
摘要。这项工作将硼亚苯丙氨酸氯化物(B-SUBPC-CL)作为有机电子材料的结构,热重,光学和电化学性质。FullProf Suite程序和Rietveld分析用于完善和索引B-SubPC-CL的晶体结构。使用Horowitz-Metzger和Coats-redfern方法,使用热重分析(TGA)和差分热力学分析(DTG)研究动力学热重量因子。B-SUBPC-CL的吸收光谱包含两个强吸收带(Soret样带和Q样带)。通过使用B-SUBPC-CL的摩尔吸收性(ε摩尔)的高斯拟合来估算振荡器强度和电偶极强度。通过使用循环伏安法测量计算B-SUBPC-CL的Homo-Lumo和Band GAP。还提供了B-SUBPC-CL的UV-VIS - NIR吸收光谱和光条间隙。密度功能理论(DFT)方法已被用于为研究化合物获得几何优化的结构。理论计算与实验结果一致。获得的结果指出了B-SubPC-CL对有机电子应用的前景。
苯丙烯是由硼原子组成的二维(2D)材料,由于其出色的机械性能,已成为广泛研究的焦点,甚至超过了石墨烯的强度和柔韧性。这些属性在健壮和弹性纳米材料的发展中呈现唯一的关键。此外,它的高电导率和各向异性电子特性在高级电子和储能技术中提供了有希望的机会。其独特的化学反应性为催化中提供了潜在的应用,尤其是在氢储存和燃料电池中。纳米材料的本期特刊旨在展示唯一的基于硼苯和硼基化合物的最新进步,突出显示其合成,性质和多面应用,包括理论和实验方面的进步。通过介绍该领域的主要专家的尖端研究,我们希望吸引高质量的提交,从而有助于本期刊的高影响力和意义,从而在这一令人兴奋的研究领域促进进一步的进步和合作。
从散装到单层guillaume cassabois laboratoire查尔斯·库仑(UMR5221)CNRS-montpellier University,F-34095 Montpellier,法国guillaume.cassabois.cassabois@umontpellier.fr Hexagonal Boron Nitride(Hexagonal Boron Nitride(Hbbn)依靠其低介电常数,高导热率和化学惰性。2004年,高质量晶体的生长表明,HBN也是深层硫酸群域中发光设备的有前途的材料,如加速电子激发[1]在215 nm处的激光证明[1],也证明了激光的表现[1],也证明了LASITIOL ELLICTER ELLICTIOL [1],也证明了LASITER IN-type-type-type-type-type-typepe inter-typepe intype intype-ultraviolet [1]。具有类似于石墨烯的蜂窝结构,大量HBN作为具有原子光滑表面的石墨烯的特殊底物获得了极大的关注,更普遍地是范德华异质结构的基本构建块[3]。我将在此处讨论我们的结果,以从批量到单层的HBN的光电特性。i将首先关注散装HBN,这是一个间接的带隙半导体,具有非凡的特性[4]。i将介绍我们最近的测量结果,揭示了散装HBN中巨大的光 - 物质相互作用[5]。然后,我将向单层HBN讲话。在通过高温MBE在石墨上生长的样品中,在与原子上薄的HBN发射的共鸣中发现了最小的反射率,从而证明了单层HBN的直接带隙[6]。最近通过从散装晶体中去除的单层HBN中的深度硫酸盐中的高光谱成像进一步证实了这些结果[7]。参考
钴双(二碳化物) (COSAN) 是一种金属碳硼烷,可用作多功能药效团,用于制备具有生物活性的有机无机混合化合物或改善核苷、反义寡核苷酸和 DNA 嵌入剂的药理特性。尽管有这些应用,但 COSAN 与核酸的相互作用仍不清楚,这限制了基于金属碳硼烷的药物开发的进一步发展。虽然 COSAN 可以嵌入 DNA,但含有 COSAN 的嵌入剂却不会,而且虽然 COSAN 表现出低细胞毒性,但嵌入剂通常具有高毒性。本研究旨在使用多种技术全面表征 COSAN 与 DNA 之间的相互作用,包括紫外可见吸收、圆二色性 (CD) 和线性二色性、核磁共振 (NMR) 光谱、热变性、粘度、差示扫描量热法 (DSC)、等温滴定量热法 (ITC) 和平衡透析测量。我们的结果表明,COSAN 对 DNA 结构、长度、稳定性或杂交没有影响,COSAN 与 DNA 结合的迹象微乎其微。此外,体外实验表明,DNA 不是 COSAN 在高浓度下诱导细胞毒性所必需的。这些发现表明 COSAN 是一种 DNA 中性药效团,从而证实了金属碳硼烷的普遍安全性和生物相容性,并为进一步开发基于金属碳硼烷的药物开辟了新的机会。
电视、智能手机和平板电脑等新兴设备正成为人们日常生活的一部分。2012 年,国际电信联盟无线电通信部门 (ITU-R) 为超高清显示器推荐了一种新的色域标准,称为 BT.2020(或 Rec.2020)。[1] 采用 Rec.2020 色域可以精细地再现自然界中的几乎所有颜色,这些颜色基于红、绿、蓝 (RGB) 三原色,国际照明委员会 (CIE) 色度坐标分别为 (0.708, 0.292)、(0.170, 0.797) 和 (0.131, 0.046)。在这种需求的驱动下,开发能够显示具有极窄发射光谱带宽和高效率的单色 RGB 颜色的新型发光材料和装置是一项至关重要的挑战。有机发光二极管 (OLED) 因其广泛的研究和开发目前被视为 UHD 显示器的主流技术。[2–8] 在过去的二十年里,随着新发光机制的出现,OLED 的效率得到了显著提高,特别是磷光 [5,8,9](第二代)和热激活延迟荧光 [7,10,11](TADF,第三代),这些机制使电子到光子转换的内部量子效率达到 ≈ 100%。尽管电致发光 (EL) 效率如此之高,但大多数传统 OLED 都存在宽带发射光谱的问题,半峰全宽 (FWHM) 通常为 > 50 nm 或更宽,从而导致 EL 的色纯度低。因此,在商用 OLED 显示器中,需要使用额外的彩色滤光片来选择性地透射原色,这不可避免地会导致光提取率下降,并导致器件的外部 EL 量子效率 (EQE) 降低。从器件的功耗角度来看,这种情况也是不利的。最近,以稠合多环 π 体系为特征的多共振诱导 TADF (MR-TADF) [12–24] 材料已成为克服传统 OLED 缺点的有机发射体的新范例,引发了研究兴趣的激增。事实上,与最先进的无机 LED 和量子点 LED 的情况一样,采用有机硼 MR-TADF 发射体的 OLED 已经实现了高效的窄带 EL
我们使用密度函数理论模拟的δ-5硼单层作为碱金属(AM)和碱 - 地球金属(AEM)离子电池的阳极材料的电化学性能。探索了Δ-5硼M on洛耶木中各种金属原子(M)的电子特性,吸附,扩散速率和存储行为。我们的研究表明,电子和金属离子传输(0.493-1.117 eV)具有较高的电导率和低激活屏障,表明快速充电/放电速率。此外,发现LI,Na和K的δ-5硼单层的理论能力大于商业石墨的理论能力。AM和AEM的平均开路电压相当低,在0.34-1.30 V的范围内。我们的结果表明,δ-5硼单层单层可能是锂离子和非锂离子可充电电池中有希望的阳极材料。关键字:2D材料;吸附;储能;模拟;扩散简介
六角硼硝酸盐(HBN)在过去十年中一直是众多研究工作的主题。是在HBN中产生光学活性缺陷,因为它们易于整合,例如在范德华(Van der Waals)异质结构及其室温光子发射。在HBN中创建此类缺陷的许多方法仍在研究中。在这项工作中,我们介绍了使用具有不同等离子体物种的远程等离子体在HBN中创建单个缺陷发射器的方法,并从统计上报告了结果。我们使用了氩气,氮和氧等离子体,并报告了由不同气体物种及其光学特性产生的发射器的统计数据。特别是,我们检查了血浆过程前后的去角质片的发射,而无需退火步骤,以避免产生不受血浆暴露引起的发射器。我们的发现表明,纯物理氩等离子体治疗是通过血浆暴露在HBN中创建光学活性缺陷发射器的最有希望的途径。