有序二维共价有机骨架(2D-COF)的原子级精确设计机会与非晶态线性聚合物、交联聚合物和超支化聚合物完全不同,从而可以前所未有地操纵构成含杂原子(N、S 和 O 等)功能团的初级和更高级排列。[1] 这类新兴的有序聚合物材料表现出有机亚基的网状生长,这些亚基通过强共价键(席夫键形成、[2] 环硼氧烷键、[3] C C 键形成、[4] 酰胺键、[5] 吩嗪键、[6] 苯并噻唑键、[7] 二恶英、[8] 二硫代丙烷键[9] 等)相互锁合,通过相邻层之间的 π – π 相互作用配置成三维阵列,并且对组成和性能具有良好的预测。结构的预测是
作者:R Blundell · 2024 — 通过结合石墨烯和硼烯,可以增强石墨的药物输送能力,从而实现更有效、更有针对性的治疗方法。
图2。原始石墨烯(C 54,第一行)的电子结构(总DOS),并研究了硼氧化的石墨素C 54- n B n(底部三行)。分别显示硼掺杂原子的P状态(如果C 52 B 2,则两个B原子的P状态重叠)。为了清楚起见,所有总DOS图均除以5。费米级(虚线,黑线)设置为0。
聚焦离子束 (FIB) 装置是一项关键技术,在纳米技术领域已得到广泛应用,可用于局部表面改性、掺杂、原型设计以及离子束分析。这种 FIB 系统的主要组成部分是离子源及其可用的离子种类 1 。目前,大多数仪器都采用 Ga 液态金属离子源 (Ga-LMIS),但对其他离子种类的需求仍在增加 2 。一种非常受关注的元素是硼,它是元素周期表中最轻的元素之一,在微电子学中已得到广泛应用,可通过注入或扩散在硅中进行 p 型掺杂 3 。人们长期以来一直对硼在 LMAIS 中的应用感兴趣,并为此付出了很多努力,通过 FIB 对材料进行局部改性,从而避免 B 宽束注入和光刻步骤。硼有两种稳定同位素,质量为 10 u(19.9% 天然
无需预活化即可对复杂分子进行功能化,从而可以在合成序列的后期引入功能团。[1] 直接 C @ H 硼化尤其令人感兴趣,因为硼功能团可以通过各种各样的转化进行进一步修饰,包括 Suzuki 偶联反应、胺化、羟基化和卤化,从而提供结构和功能的分子复杂性。[2] 对于该应用至关重要的是可以控制反应的选择性,这对于空间和电子失活的 C @ H 键尤其具有挑战性。最近,已经探索了利用底物和金属配合物配体之间的超分子相互作用来控制选择性,[3] 并且这导致了用于电子(未)活化底物的选择性间位或对位 C @ H 硼化的催化剂。 [4] 然而,邻位选择性 C @ H 硼化仅报道用于电子活化芳烃,例如胺、[5] 醇、[6] 或硫醚取代的 [7] 芳烃。二级芳香酰胺是药物、农用化学品和精细化学品中非常常见的结构单元,[8] 因此,此类化合物的邻位选择性 C @ H 硼化将非常有趣。然而,此类化合物的直接邻位 -C @ H 硼化极具挑战性。对于常见的铱-
摘要:归因于独特的拓扑复杂性和优雅的美丽,Borromean系统引起了强烈的关注。然而,目前,硼有机聚合物的建造仍然是一个挑战。为了应对这一巨大的挑战,我们开发了一种超分子 - 诱导的方法来制造硼链链接的有机聚合物。尼古拉德式构建块,具有线性脱氧基础块,构建两个稀有的共价有机框架(COFS),具有高结晶度和坚固的结晶度和坚固的结晶度和坚固型,犹太人选择的三角锥体构件(1,3,5- tris(4-氨基苯基))的溶剂热凝结反应。 结构完善揭示了纠缠2D的成功形成! 2D硼阵列结构。 这两个COF都是微孔的,因此证明了气体分离的潜力。 成功合成了前两个Borromean连接的有机聚合物,铺平了大道,将超分子合成驱动的方法扩展到其他构件和拓扑,并扩大了COF的家庭和范围。犹太人选择的三角锥体构件(1,3,5- tris(4-氨基苯基))的溶剂热凝结反应。结构完善揭示了纠缠2D的成功形成!2D硼阵列结构。这两个COF都是微孔的,因此证明了气体分离的潜力。成功合成了前两个Borromean连接的有机聚合物,铺平了大道,将超分子合成驱动的方法扩展到其他构件和拓扑,并扩大了COF的家庭和范围。
Brain Driver BCI赛车游戏用于练习化身(虚拟赛车)的控制(图1C)。Braindriver游戏的实际轨道包括四个不同的区域。有左右曲线的区域,有街道灯打开或关闭路灯的区域。要保持车辆的最大速度,飞行员必须使用4级BCI(例如,左或右臂运动图像或权利转弯,脚“大灯”,并放松“无控制”)。如果提出了不正确的命令,则抑制车辆,这对飞行员表现出明显的负面视觉反馈,以实现学习和尝试校正策略。发出命令后,指示飞行员立即放松,以允许“无控制”,或者作为继续维护
在发达国家,最大的担忧之一是由于经济的快速增长,能源需求与非可再生能源 (NRS) 生产之间的差距越来越大。除此之外,二氧化碳排放造成的环境污染和气候变化是另一个必须处理的真正危险 [1 和 3]。因此,对 NRS 的依赖应该转向更清洁、更高效的可再生能源。在不同的可用选择中,氢 (H2) 因其丰富的可用性、环境友好性以及最大的能量密度而引人注目,因此氢 (H2) 具备成为优秀能源载体的所有能力 [4 和 16]。尽管有这些优点,但将 H2 用作可再生能源仍存在一些技术难题 [17]。主要的技术挑战是找到一种良好的储存方法。虽然可以使用液化和加压存储氢气,但由于价格昂贵和安全问题,其使用受到限制 [18,19]。基于材料的储氢是近年来使用的另一项革命性技术,但找到更好的候选材料也是一项挑战 [20]。二维材料凭借其独特的物理和化学性质,带来了材料科学的新时代 [21]。自石墨烯成功研制后,人们对二维材料产生了浓厚的兴趣 [22],石墨烯实际上是一个碳原子的单层,具有非常有趣的特性 [23,24]。然而,石墨烯具有有利可图的特性,但由于缺乏带隙,限制了它在多个技术领域的应用 [25]。这启发了研究人员去研究除石墨烯之外的具有固有带隙的二维材料。由于其迷人且具有技术价值的特性,2D 材料可在许多方面得到应用,例如太阳能电池[26 e 28]、气体传感材料[29 e 31]、光电探测器[32]、电池应用[33]等等。更有趣的是,最近的一些研究表明,H 2 可以储存在 2D 材料中。然而,美国能源部建议的条件和标准,例如储存能力、大气条件下氢的吸附和解吸是一项具有挑战性的工作[34 e 39]。基于硼的材料,例如硼烷[40,41]、硼墨烯[42,43]、氮化硼[44],由于其大的表面积和形貌,已被观察到有效的 H 2 存储介质。虽然不含硼的材料如氮化镓[45]、硅烯[46]、锗烯[47]、二硫化钼[48]、磷烯[49]、石墨烯[50 e 52]和单壁碳纳米管[53,54]以及其他单层材料[55 e 59]也被发现是很有前途的储氢材料。近年来,硫化镓(GaS)单层中发现了一些新特性,如高热导率 [ 60 ] 是一种很有前途的氢气析出材料
基团。C – C 键的高反应性还会在各种反应条件下引起立方烷骨架的分解。13 为了开辟立方烷分子科学的新前景,我们开始了立方烷 C – H 转化化学的研究,其中我们选择立方烷的芳基化作为第一个也是最有价值的目标反应。芳基立方烷是立方烷衍生物,最近作为药理学上重要的联芳烃的生物电子等排体而受到关注。14 多芳基化立方烷是前所未有的立方烷衍生物,它们也因其由刚性定向芳基构建的独特、三维和多样化的化学空间而引人注目。在此,我们报道了一种通过定向邻位 -C – H 金属化进行的氨基立方烷钯催化芳基化反应。该方法允许在后期阶段对各种芳基基团进行区域选择性地安装到立方烷骨架上,最终首次合成了多芳基立方烷(图 1)。1988 年,Bashir-Hashemi 报道了立方烷的 C – H 苯基化,其中立方烷基溴化镁通过立方烷-1,4-双(N , N - 二异丙基酰胺)( 1a )的定向邻位锂化生成,然后用苯炔处理得到
目前,由金属有机化学蒸气沉积(MOCVD)生长的富含硼龙硼氢化硼(H-10 BN)硝酸硼(H-10 BN)超级氮化液(MOCVD)生长的超速型硝酸硼(H-10 tbn)超级氮化液带固定型的热中性探测器保持创纪录的所有固体检测率在59%处于59%的固体检测器中。为了克服MOCVD增长的短期繁殖,包括固有的低增长率和不可避免的杂质,例如金属有机物中的碳,我们在这里证明了使用Halide蒸汽相结合(HVPE)的SEMI SENIQUICENCE的天然六边形硝酸硼(H-BN)半裸型硼硼(H-BN)半裸型WAFER的增长。电运输表征结果表明,这些HVPE种植的材料具有1 10 13 x cm的电阻率,电荷载体迁移率和寿命为2 10 4 cm 2 /v s。用100 l m厚的H-BN晶片制成的检测器表明,热中子检测效率为20%,对应于500 V的运营电压,对应于60%的收费收集效率。此初始演示为高效H-BN中性探测器的高效型核能造成了核能的核能,这可能会创造出较高的核能,这可能会产生核能的核能,这可能会创造出不合时宜的核能,这可能会导致不合时宜,这可能会造成良好的核能,这可能会造成良好的成本,这可能会导致良好的核能,这可能会导致良好的核能,这是可降低的,这可能会产生良好的核能,这可能会产生良好的核能。核废料监测和管理,医疗保健行业以及物质科学。
