摘要 量子点 (QD) 中自旋量子比特的电控制依赖于自旋轨道耦合 (SOC),它既可以是底层晶格或异质结构的固有特性,也可以是外部特性,例如通过微磁体。在实验中,微磁体已被用作合成 SOC,以使量子点中的自旋量子比特与电场强耦合。在这里,我们从理论上研究了由于合成 SOC 诱导的自旋轨道混合而导致的 QD 中电子的自旋弛豫、纯失相、自旋操纵和自旋光子耦合。我们发现,与固有 SOC 的情况相比,合成 SOC 存在时自旋动力学存在质的差异。具体而言,由于合成 SOC 和形变势声子发射(或约翰逊噪声)引起的自旋弛豫表现出对磁场的 B 5 0(或 B 0 )依赖性,这与本征 SOC 的 B 7 0(或 B 3 0 )依赖性形成对比。此外,电荷噪声会导致合成 SOC 发生快速自旋失相至一阶,这与本征 SOC 可忽略的自旋纯失相形成鲜明对比。这些定性差异归因于合成 SOC 的时间反转对称性(T 对称性)破缺。具有破缺 T 对称性的 SOC(例如来自微磁体的合成 SOC)消除了“范弗莱克抵消”并导致有限的纵向自旋-电耦合,从而允许自旋和电场之间的纵向耦合,进而允许自旋纯失相。最后,通过适当选择磁场方向,可以改善通过合成 SOC 实现的电偶极子自旋共振,并在基于自旋的量子计算中具有潜在的应用。
1.简介 纳米磁性涉及研究磁有序材料在至少一个维度上受到几何限制时的行为。除了二维薄膜外,还可以考虑诸如一维纳米线或零维磁岛之类的物体。天然存在的纳米磁体相对罕见。纳米磁体的一些例子是磁铁矿 (Fe 3 O 4 ) 颗粒,它们沉淀在静磁细菌、软体动物、昆虫、鸟类和鱼类的不同器官中。人们认为这些粒子可作为迁移的场传感器。磁铁矿和其他氧化物细颗粒也是岩石磁性的原因,在陨石中也有遇到。然而,由于稀释和不完全饱和,天然纳米颗粒中的磁性逐渐减小。磁性材料的进一步改进在很大程度上依赖于纳米结构和自旋工程。由于新型高分辨率制造技术的不断发展,从相对较大的微米颗粒到单个原子链的各种物体都可以相当容易地生产出来。另一方面,“超材料”方法代表了材料设计策略,可以生产自然界中不存在的材料。
Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, JM 和 Gambetta, JM ( 2017 ). 适用于小分子和量子磁体的硬件高效变分量子特征求解器。《自然》, 549(7671), 242–246。http://doi.org/10.1038/nature23879
- 因此,随着酸雨的降雨量,在气流和跌落时进行了2个旅行 - 汞生物蓄能和生物磁体通过生态系统在气流上行驶并像颗粒灰尘或其他地方的降水量下降时,通过生态系统进行生态系统。•燃烧化石燃料会产生大量的CO 2,这有助于全球变暖•使我们依靠其他国家来满足我们的能源需求。使我们脆弱。
范德华 (vdW) 磁体的发现为凝聚态物理和自旋电子技术开辟了新范式。然而,具有 vdW 铁磁体的有源自旋电子器件的操作仅限于低温,从而限制了它们更广泛的实际应用。本文展示了使用石墨烯异质结构中的 vdW 流动铁磁体 Fe 5 GeTe 2 的横向自旋阀器件在室温下的稳健操作。在具有负自旋极化的石墨烯界面处测量了 Fe 5 GeTe 2 的室温自旋电子特性。横向自旋阀和自旋进动测量通过自旋动力学测量探测 Fe 5 GeTe 2 /石墨烯界面自旋电子特性,揭示了多向自旋极化,从而提供了独特的见解。密度泛函理论计算与蒙特卡罗模拟相结合,揭示了 Fe 5 GeTe 2 中显著倾斜的 Fe 磁矩以及 Fe 5 GeTe 2 /石墨烯界面处存在负自旋极化。这些发现为范德华界面设计和基于范德华磁体的自旋电子器件在室温下的应用提供了机会。
1。世界上高磁场的磁铁开发项目2。HFLSM的无冻磁体开发•从Rebco线圈的失败中学到的经验教训3.稳健的Rebco线圈概念•两个捆绑绕组Rebco线圈具有局部损坏•大规模Rebco R&D Coil 4。33T无冰低导的磁铁发育5。摘要
3.1 磁性要求 . . 3-1 3.2 超导体 3-1 3.2.1 规格要求 3-1 3.2.2 测试要求 3-1 3.2.3 电流密度 3-2 3.2.4 稳定性 3-2 3.2.5 保护 3-2 3.3 绕组组件 3-2 3.3.1 概述 - 封装配置 3-2 3.3.2 绕组概念和张力 3-4 3.3.3 绝缘/冷却概念 3-4 3.3.4 线轴 3-4 3.3.5 绝缘强度 3-4 3.4 磁体杜瓦瓶 3-5 3.4.1 概述 3-5 3.4.2 接口 3-6 3.4.3.杜瓦真空 3-6 3.4.4 热性能 3-7 3.5 结构要求 • 3-7 3.5.1 结构性能要求 3-8 3.5.2 设计环境 3-10 3.6 电源和配电系统 3-16 3.6.1 电源设计标准 3-16 3.6.2 配电系统设计标准 3-21 3.7 磁体保护系统设计标准 3-22 3.7.1 •'••.防护理念 3-22 3.7.2 防护设备 3-24 3.8 仪器仪表和控制 3-27 3.9 安全与危险设计标准 3-28 3.10 X 射线防护罩 3-31 3.11 . 开发计划 3-32
MA900是一种非接触式,精确,磁性绝对角度传感器。从传感器IC上多个位置的磁场差异中提取角度。这种差异方法消除了寄生磁场的贡献,非常适合用简单的目标磁体放置在轴末端的传感器。对于快速数据采集和处理,MA900以从0rpm到100,000rpm的速度提供准确的角度测量。
1989 年 11 月 7 日至 9 日,美国-日本在洛斯阿拉莫斯国家实验室 (LANL) 举办了两次关于紧凑环形 (CT) 等离子体物理和技术的研讨会。紧凑环形是主要受内部等离子体电流产生的磁场限制的结构。环形电流不受诸如磁线圈或真空容器等物体的阻碍。紧凑环形通常分为两类:场反转结构 (FRC),一种非常高的 beta 长等离子体,以及球形结构,通常是更扁的结构。第一个研讨会,即美国-日本场反转结构与稳态高温聚变等离子体研讨会,专门讨论了 FRC 的理论方面。紧接着召开的第二次研讨会,即第 11 届美日紧凑环形磁体研讨会上,介绍了关于 FRC 和球形磁体的实验和理论论文。总共有来自 23 个不同机构的 61 名注册参与者。十名参与者来自日本,两名来自欧洲,其余来自美国。共有 48 场演讲,平均分为口头和海报会议。联合研讨会论文集提交了四页配套论文,最近由 LANL 出版。