身体内部信号,如心脏 - 呼吸信号,不断从身体传输到大脑,确保生物体的自我调节。皮层下大脑区域对于这种身体 - 大脑交流尤为重要,但它们对人类内部身体信号的处理在很大程度上是未知的。通过研究人类三个皮层下区域(两个丘脑核和一个丘脑底核)中单个神经元的活动,我们发现大部分神经元受到心跳、呼吸或心动周期持续时间的调节,而这些信号的普遍性在皮层控制区域中大大降低。我们的研究表明,重要的心脏 - 呼吸信号在这些皮层下区域是如何被广泛处理的,扩展了我们对它们在身体 - 大脑交流中的作用的理解。
在诸如血脑屏障之类的生物屏障中传递大分子,限制了它们在体内的应用。先前的工作表明,弓形虫弓形虫是一种自然从人肠道传播到中枢神经系统(CNS)的寄生虫,可以将蛋白质传递给宿主细胞。在这里,我们设计了T. gondii的内源性分泌系统,晶状体和致密颗粒,通过转化为毒素和gra16,将多个大型(> 100 kDa)治疗蛋白传递到神经元中。我们证明了使用成像,下拉测定,SCRNA-SEQ和荧光记者的培养细胞,脑器官和体内的递送以及探针蛋白活性。我们证明了小鼠腹膜内给药后的强大分娩,并表征了整个大脑的3D分布。作为概念证明,我们证明了GRA16介导的MECP2蛋白的大脑递送,MECP2蛋白是RETT综合征的假定治疗靶标。通过表征系统的潜在和当前局限性,我们旨在指导更广泛应用所需的未来改进。
摘要:适体功能化的生物传感器在监测复杂环境中的神经递质方面表现出高选择性。我们将纳米级适体修饰的纳米移液器传感器转化为检测体外和离体内源性多巴胺的释放。这些传感器采用具有纳米级孔(直径约 10 纳米)的石英纳米移液器,其用适体功能化,从而能够通过目标特定的构象变化选择性捕获多巴胺。多巴胺结合后适体结构的动态行为导致纳米孔内表面电荷的重排,从而导致可测量的离子电流变化。为了实时评估传感器性能,我们设计了一个流体平台来表征纳米移液器传感器的时间动态。然后,我们通过在生物环境中部署用非特异性 DNA 修饰的对照传感器以及多巴胺特异性传感器来进行差异生物传感。我们的研究结果证实了适体修饰的纳米移液器可用于直接测量未稀释的复杂流体,特别是在人类诱导多能干细胞衍生的多巴胺能神经元的培养基中。此外,传感器植入和急性脑切片中的重复测量是可能的,这可能是由于纳米级 DNA 填充孔内的受保护传感区域,最大限度地减少了非特异性干扰物的暴露并防止堵塞。此外,背外侧纹状体通过电刺激释放的内源性多巴胺的差异记录表明适体修饰的纳米移液器具有以前所未有的空间分辨率和减少的组织损伤进行体外记录的潜力。关键词:生物传感器、DNA、多巴胺、流体学、诱导多能干细胞衍生的神经元、纳米孔■简介
汉娜·谢伊布里奇(Hannah Scheiblich),1,2,3弗雷德里克·艾肯斯(Frederik Eikens),1,2,2,2 lena wischhof,2,3 Sabine Opitz,4 Kay J€ungling,5 Csaba csere´ P,6 Susanne V. Schmidt,Susanne V. Schmidt,1 1 Jessica Lambertz,7 jessica Lambertz,7 tracy Bellande,8 Balande,8 Bala's poeck Zs poote Zs po g po g po g po g po g s po po g'po。 Jasper Spitzer,1 Alexandru Odainic,1,9 Sergio Castro-Gomez,10 Stephanie Schwartz,10 Ibrahim Boussaad,11 Rejko Kr Kr€Uger,11 Enrico Glaab,11 Donato A.di Monte,2 Daniele Bano,2 a·da´m de´nes,6 Eike Latz,2,12 Ronald Melki,8 Hans-Christian Pape,5和Michael T. Heneka 2,11,11,12,12,13,14, * 1德国科隆的麦克斯·普兰克 - 衰老生物学生物学4神经病理学研究所,波朗大学,波朗大学,德国波恩大学5个生理学研究所I研究所,Westf€Alische Wilhelms-University M€UNSTER M€UNSTER M€UNSTER,M€UNSTER,M€UNSTER,UNSTER,UNSTR Franc¸ ois Jacob, CEA and Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France 9 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, VIC, Australia 10 Institute of Physiology II, University Hospital Bonn, Bonn, Germany 11 Luxembourg Centre for Systems Biomedicine, University of卢森堡,Belvaux,卢森堡12个先天免疫学院,大学医院波恩,波恩,德国波恩,13传染病和免疫学系,马萨诸塞大学,美国马萨诸塞州医学院,马萨诸塞州伍斯特大学,美国马萨诸塞州,美国马萨诸塞州14铅接触。 https://doi.org/10.1016/j.neuron.2024.06.029
迷走神经刺激 (VNS) 是一种已获批准的治疗方法,可用于治疗多种神经系统疾病,包括难治性癫痫和难治性抑郁症等,目前正作为治疗神经系统痴呆症(如阿尔茨海默病 (AD) 和相关痴呆 [1] )的潜在疗法而受到关注。VNS 刺激有两种形式,即侵入性和非侵入性(经皮),前者涉及通过手术将刺激电极植入神经周围,后者因副作用小而最受欢迎,涉及通过完整的皮肤刺激迷走神经耳支 (ABVN) 的耳甲区或迷走神经分布的颈部区域 [2] 。在耳甲区以外,耳颞神经支配耳区上方和耳大神经支配下外侧 [3] ,但关于电刺激对这些神经对身体的影响的研究很少。
1 莱布尼茨神经生物学研究所,学习和记忆遗传学系,马格德堡,39118,德国,2 莱比锡大学生物研究所动物生理学系,莱比锡,04103,德国,3 莱比锡大学生物研究所遗传学系,莱比锡,04103,德国,4 魏茨曼科学研究所分子细胞生物学系,雷霍沃特,7610001,以色列,5 亚琛工业大学成像和计算机视觉研究所,亚琛,52074,德国,6 波多黎各大学医学科学园区神经生物学研究所,旧圣胡安,波多黎各,00901,7 剑桥大学生理学、发育和神经科学系,剑桥,CB2 3EL,英国,8 珍妮莉亚研究园区,霍华德休斯医学研究所,阿什本, 20147,弗吉尼亚州,9 莱布尼茨神经生物学研究所,组合神经影像核心设施,马格德堡,39118,德国,10 加利福尼亚大学,分子,细胞和发育生物学系,加利福尼亚州洛杉矶 90095-1606,11 巴黎萨克雷大学,国立科学研究中心,巴黎萨克雷神经科学研究所,萨克雷,91400,法国,12 行为脑科学中心,马格德堡,39106,德国,13 奥托冯格里克大学生物学研究所,马格德堡,39120,德国
有越来越多的研究项目,其目的是模拟大脑区域甚至完整的大脑,以更好地了解其工作方式。让我们引用:例如:欧洲的人类脑项目(1),通过疾病研究的综合神经技术(脑/思想)(7)或统一国家的大脑倡议(25)进行大脑映射。几种方法是可行的。有生化方法(34),它注定要像大脑一样复杂。已经研究了一种更具生物物理的方法,例如,请参见(14),其中皮质桶已成功地进行了相似,但仅限于约10个5个神经元。,人脑含有大约10个11个神经元,而像marmosets(7)这样的小猴子有6×10 8神经元(22)和一个较大的猴子,例如
根据侵入性,BCI 主要分为两类。非侵入式 BCI 无需手术即可从外部刺激大脑。尽管某些技术可以针对大脑的较小区域,但非侵入式 BCI 可以覆盖大脑的较大区域。相比之下,侵入式系统可以应用于小区域,甚至具有单神经元分辨率,但会带来更高的生理风险(Ramadan 和 Vasilakos,2017 年)。基于 BCI 的相关性和扩展性,近年来出现了新的技术和公司,专注于开发新的侵入式系统,以神经元粒度刺激大脑。Neuralink 就是一个例子(Musk 和 Neuralink,2019 年),这家公司设计了颠覆性的 BCI 系统来记录神经元级别的数据,目前正致力于覆盖刺激功能。此外,神经尘埃(Seo 等人,2013)是一种由数百万个位于大脑皮层中的纳米级可植入设备组成的架构,可以进行神经记录。神经尘埃的演变是无线光遗传学纳米网络设备 (WiOptND)(Wirdatmadja 等人,2017),它使用光遗传学来刺激神经元。尽管这些方法很有前景,但 Bernal 等人 (2020) 的作者表明,它们存在漏洞,可能允许攻击者控制两个系统并执行恶意刺激动作,从而改变自发的神经元信号。根据攻击的覆盖范围(就大脑区域和受影响的神经元数量而言),网络攻击者可能会造成永久性脑损伤,甚至导致患者死亡。在同一方向上,Bernal 等人 (2021) 发现 BCI 的网络安全领域还不够成熟,非复杂的攻击可能会造成重大损害。总之,攻击者可以利用 BCI 漏洞来利用这些有前途的神经刺激技术。以这些研究的发现为动机,本文重点关注针对旨在改变神经元行为的网络攻击的稀缺研究。此外,还需要新的方法来衡量和理解这些攻击的影响。特别是,这些问题具有特殊的意义,因为攻击可能会恶化或重现常见神经退行性疾病的影响(Bernal 等人,2021 年)。为了改进以前的挑战,这项工作的主要贡献是定义和实施一种新的神经元网络攻击,即神经元干扰网络攻击 (JAM),重点关注神经活动的抑制。本研究旨在探索抑制性神经元网络攻击对大脑的影响。然而,文献中缺乏全面的神经元拓扑结构,因此,我们模拟了小鼠视觉皮层的一部分,放置在大脑的枕叶区域,定义了小鼠试图离开特定迷宫的用例。神经元拓扑是使用经过训练以解决此特定用例的卷积神经网络 (CNN)(Géron,2019)构建的。这项工作的第二个贡献是评估了 JAM 网络攻击对特定场景中的神经元和人工模拟造成的影响。为了进行分析,我们使用了现有指标,但也定义了一组新指标,得出结论:JAM 网络攻击可以改变自发的神经元行为,并迫使小鼠做出不稳定的决定以逃离迷宫。
虚拟现实环境为研究脑机接口 (BCI) 在现实环境中的性能提供了绝佳的机会。由于现实世界的刺激通常是多模态的,它们的神经元整合会引发复杂的反应模式。为了研究额外的听觉提示对视觉信息处理的影响,我们使用虚拟现实来模拟工业环境中的安全相关事件,同时记录脑电图 (EEG) 信号。我们模拟了一个在传送带系统上移动的盒子,其中两种类型的刺激(爆炸和燃烧的盒子)会中断正常操作。来自 16 名受试者的记录分为两个子集,一个是纯视觉实验,另一个是视听实验。在纯视觉实验中,两种刺激的反应模式引发了类似的模式——视觉诱发电位 (VEP),然后是枕叶-顶叶上的事件相关电位 (ERP)。此外,我们发现感知到的事件严重程度反映在信号幅度中。有趣的是,额外的听觉提示对先前的发现产生了双重影响:在爆炸盒刺激的情况下,P1 成分被显著抑制,而燃烧盒刺激下 N2c 则有所增强。这一结果凸显了多感官整合对现实 BCI 应用性能的影响。事实上,我们观察到基于混合特征提取(方差、功率谱密度和离散小波变换)和支持向量机分类器的检测任务的离线分类准确度发生了变化。在爆炸的情况下,与仅视觉实验相比,视听实验的准确度略有下降,为 -1.64%。相反,当存在额外的听觉提示时,燃烧盒的分类准确度增加了 5.58%。因此,我们得出结论,特别是在具有挑战性的检测任务中,当 BCI 应该在(多模态)真实世界条件下运行时,考虑多感官整合的潜力是有利的。