本教科书基于我在哥德堡大学和瑞典哥德堡的Chalmers技术大学提供的课程人工神经网络的讲义。当我准备讲座时,我的主要来源是Hertz,Krogh和Palmer [1]对神经计算理论的介绍。其他来源是神经网络:Haykin [2]的综合基础,霍纳的讲座注释[3],Heidelberg,Goodfellow,Bengio&Courville的深度学习[4],在线书籍神经网络和Nielsen的深度学习[5]。I thank Martin ˇ Cejka for typesetting the first version of my hand-written lecture notes, Erik Werner and Hampus Linander for their help in preparing Chapter 8, Kris- tian Gustafsson for his detailed feedback on Chapter 11, Nihat Ay for his comments on Section 4.5, and Mats Granath for discussions about autoencoders.I would also like to thank Juan Diego Arango, Oleksandr Balabanov, Anshuman Dubey, Johan Fries, Phillip Gräfensteiner, Navid Mousavi, Marina Rafajlovic, Jan Schiffeler, Ludvig Storm, and Arvid Wenzel Wartenberg for implementing algorithms described in this book.许多数字基于其结果。Oleksandr Balabanov,Anshuman Dubey,Jan Meibohm,尤其是Johan Fries和Marina Rafajlovic提出了考试问题,这些问题成为了本书的练习。最后,我要感谢StellanÖstlund的鼓励和批评。最后但并非最不重要的一点是,许多同事和学生(过去和现在)指出了错误的印刷和错误,并提出了改进。我感谢他们。目前的版本不包含练习(剑桥大学出版社拥有的版权)。完整的书可从剑桥大学出版社获得。
量子神经网络作为将经典神经计算与量子计算相结合的新领域,其早期定义在 21 世纪相当模糊和令人满意。2020 年,量子神经网络被广泛定义为将量子计算功能与人工神经网络相结合的模型或机器学习算法 [1],这剥夺了量子神经网络的根本重要性。我们认为,量子神经网络的概念应该根据其最普遍的功能来定义,即表示任意量子过程振幅的工具。我们的推理基于量子力学中费曼路径积分公式的使用。这种方法已在许多著作中用于研究量子宇宙学的主要问题,例如宇宙的起源(例如,参见 [2])。事实上,我们的宇宙是否是量子计算机的问题是由 Seth Lloyd [3] 提出的,他的答案是“是”,但我们认为宇宙可以被视为一个量子神经网络。
摘要 机器学习模型在准确性、计算/内存复杂度、训练时间和适应性等特性方面有所不同。例如,神经网络 (NN) 因其自动特征提取的质量而具有高精度而闻名,而受大脑启发的超维 (HD) 学习模型则以其快速训练、计算效率和适应性而闻名。这项工作提出了一种混合、协同机器学习模型,该模型在上述所有特性方面都表现出色,适用于芯片上的增量在线学习。所提出的模型包括一个 NN 和一个分类器。NN 充当特征提取器,经过专门训练,可以与采用 HD 计算框架的分类器配合良好。这项工作还提出了所述特征提取和分类组件的参数化硬件实现,同时引入了一个编译器,该编译器将任意 NN 和/或分类器映射到上述硬件。所提出的混合机器学习模型具有与 NN 相同的准确度(即 ± 1%),同时与 HD 学习模型相比,准确度至少提高了 10%。此外,与最先进的高性能 HD 学习实现相比,混合模型的端到端硬件实现可将功率效率提高 1.60 倍,同时将延迟时间缩短 2.13 倍。这些结果对于此类协同模型在具有挑战性的认知任务中的应用具有深远意义。
小时候,我经常想知道人们的思想是如何工作的。在我在计算机科学和工程方面的培训中,我认为它的功能像发条一样,因此必须有一种算法。但是,在学习算法设计时,我遇到了逆问题,将人类解决问题的方式转化为计算机算法。这仅是针对基本问题的。对于人类来说,计算机/数学的简单性似乎极为困难。例如,对我们来说很难乘以大量,但对计算机来说很琐碎。相比之下,对于我们来说,对我们来说很简单的东西对于计算机/数学来说非常困难。当我学习AI作为课程的一部分时,这变得非常明显。我觉得我们需要研究自然智力的运作方式,然后才能真正地设计人工智能。研究计算神经科学是桥梁差距的自然发展。
摘要 - 从心电图(ECG)记录中自动提取基本数据的研究一直是一个重要的主题。数字处理过程的主要重点是测量基于其波形特性来确定P,QRS和T波的开始和结束的基准点。在ECG数据收集过程中存在不可避免的噪声以及个体之间固有的生理差异使得准确识别这些参考点的挑战,从而导致次优性能。这是通过几个主要阶段完成的,这些阶段依赖于通过一组步骤对ECG电信信号进行初步处理的想法(准备原始数据并将其转换为已读取的文件,然后通过删除空数据并统一信号的宽度并在250的长度上统一信号的宽度,以便确定噪声,然后确定Quy的过程,然后确定QR的过程,并确定QR和QR的过程,并在QR中进行QR和P-QR的过程,并在QR中进行QR和P-QR和p-峰值并根据它进行切割U-NET预训练的模型用于深度学习。它采用具有可自定义采样率的ECG信号作为输入,并生成P和T波的开始点和结尾点以及QRS复合物作为输出。