神经科学和人工智能 (AI) 有着悠久的合作历史。神经科学的进步以及过去几十年计算机处理能力的巨大飞跃,催生了受大脑结构启发的新一代计算机神经网络。这些人工智能系统现在能够实现生物系统的许多高级感知和认知能力,包括物体识别和决策。此外,人工智能现在越来越多地被用作神经科学研究的工具,并正在改变我们对大脑功能的理解。特别是,深度学习已用于模拟大脑皮层中的卷积层和循环连接如何控制重要功能,包括视觉处理、记忆和运动控制。令人兴奋的是,使用受神经科学启发的人工智能也有望理解大脑网络的变化如何导致精神病理学,甚至可以用于治疗方案。在这里,我们讨论了神经科学与人工智能之间的关系导致该领域取得重大进步的四个领域的最新进展;(1)工作记忆的人工智能模型,(2)人工智能视觉处理,(3)大型神经科学数据集的人工智能分析,以及(4)计算精神病学。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。
在阅读本书之前,你可能已经阅读过一些深度学习的经典论文。如果你这样做了,你可能会意识到作者们所说的语言与你所理解的不同;他们使用物理语言。让我们举个例子。以下摘录自该领域的经典论文之一;Salakhutdinov 和 Hinton 2012 年的著作,题为深度玻尔兹曼机的有效学习程序 [1]。这是深度学习领域最重要的论文之一。出版于我们将在后续章节中查看同一著作的较长摘录,现在我们只想确定一个关键术语。为了清晰和重点,作者在以下摘录中以粗体斜体形式显示了关键术语:摘自 Salkakhutdinov 和 Hinton (2012) [1]:无向图模型,例如玻尔兹曼机,在最大似然梯度中有一个额外的、与数据无关的项。该项是对数配分函数的导数,与数据相关项不同,它带有负号。这意味着,如果使用变分近似来估计与数据无关的统计数据,则所得的梯度将倾向于改变参数,从而使近似值变得更糟。这可能解释了使用变分近似来学习玻尔兹曼机缺乏成功的原因。这里的关键术语是对数配分函数,或者更简单、更具体来说,是配分函数。配分函数的概念是统计力学的核心和唯一性。如果我们能够理解这一点,我们就有一个切入点来开拓和理解深度学习的全部工作领域。
数据集不具代表性会导致模型在训练数据集上表现良好,但在实际使用中,当输入新数据或独特数据时,模型无法泛化。然而,原因却不同。如果模型训练时间过长或具有过多容量,用于记忆训练数据(而不是识别其中的潜在模式)或学习其中不相关的模式,则会发生过度拟合。例如,电子邮件垃圾邮件检测模型可能会在训练期间记住标记为垃圾邮件的电子邮件中的特定单词或短语。当这些确切的单词没有出现在现实世界的垃圾邮件中时,它就无法将其检测为垃圾邮件。
现代量子技术利用量子系统的独特特性来实现经典策略无法达到的性能。这一潜在优势取决于创建、操纵和测量量子态的能力。该领域的任何实验程序都需要对这些步骤进行可靠的认证:这正是量子态层析成像 (QST) 的领域 [1]。QST 的目标是通过对系统有限组相同副本进行测量来估计未知的量子态。如果状态由密度矩阵 ϱ 描述,位于 ad 维希尔伯特空间中,则需要 O(d/ε) 个副本才能获得 ϱ 的估计值,且误差(理解为总变分距离)小于 ε[2]。这清楚地说明了 QST 对大规模系统的资源需求。从广义上讲,QST 是一个逆问题 [3-5]。因此,线性反演 [6] 可能是该主题最直观的方法。然而,它也有一些缺点:它可能报告非物理状态,并且无法通过分析确定估计的均方误差界限。为了绕过这些缺点,可以使用各种有用的 QST 方法,例如贝叶斯断层扫描 [ 7 , 8 ]、压缩感知 [ 9 , 10 ] 或矩阵积状态 [ 11 , 12 ],尽管最大似然估计 (MLE) 仍然是最常用的方法 [ 13 , 14 ]。从现代的角度来看,QST 本质上是一个数据处理问题,试图从
神经网络,也称为人工神经网络,通常是一种依赖于计算的技术,其形成和设计目的是模拟人类的真实大脑,以用作解决问题的方法。人工神经网络通过训练或学习的方法获得其能力,每种方法都有一定的输入和输出,也称为结果,这种学习方法的作用是在输入和结果之间形成概率加权关联,这些关联存储并保存在网络中,特别是在其数据结构中,任何训练过程都取决于识别处理后的输出(通常是预测)与实际目标输出(作为错误出现)之间的净差异,然后进行一系列调整以获得适当的学习结果,这个过程称为监督学习。人工神经网络因其能够重现和模拟非线性现象的能力,已在各个领域的许多应用中得到证实。系统识别和控制(过程控制、车辆控制、量子化学、轨迹预测和自然资源管理等)以及人脸识别,这已被证明非常有效。神经网络由于其准确性和解决问题的特性被证明在许多领域是一种非常有前途的技术。关键词
自20世纪初期其临床机构以来,颅内脑电图(IEEG)已成为评估和随后在癫痫手术中进行管理的基本方式(1-4)。通过使用下硬膜下电极(5)或立体定向脑电图(SEEG)(6)记录,IEEG允许癫痫发射区域的定位或癫痫发作网络引起癫痫发作(7,8)。计算机辅助信号处理方法在领域中流行,以支持癫痫发作的繁琐任务(9-11)。深度学习方法学在医疗领域取得了成功,因为它们从原始数据中提取信息的效率(12)。最近确定的机器学习方法之一是卷积神经网络(CNN)模型。cnn是人工神经网络,具有多个连续的层,以层次结构进行卷积(13,14)。它们被认为是需要处理多个数组数据的应用程序中的深度学习模型,因为它们可以成功地识别数据中的本地连词并从低级别的数据中构建高级功能(15)。在与大脑相关的科学和临床领域中,神经网络已成为脑部计算机界面的核心实体(16-23),对脑部疾病的辅助诊断和康复(24-27),并允许方法学改善NEUROSCICIENT(28 - 31)。更少的研究使用了深度学习来检测IEEG数据的癫痫发作(46)。针对脑电图(EEG)数据分析,特别是,通过CNN的深度学习已用于特征提取目的(32-34),认知性能的预测(35、36)和识别唤起电位(37)。近年来,深度学习已应用于颅外脑电图数据中,以促进成人(38 - 41),儿童(42)和新生儿种群(43)的癫痫发作检测,并识别发作的脑电图特征(44,45)。机器学习方法也已被用来将颅外脑电图与ECOG放电(47),预测癫痫发作(41、48),并设计癫痫发作检测嵌入式系统(49)。旨在使用颅内癫痫发作的脑癫痫发作的数据进行癫痫的颅内癫痫发作数据,受到每位患者可用的记录癫痫发作的少量限制。最近,美国食品药物管理局(FDA)批准的RNS系统的神经调节已在美国使用,作为药物治疗局灶性癫痫患者的替代微创和个性化治疗(50)。RNS系统是一种可植入的闭环电刺激装置,在检测出诊所模式后,将电刺激应用于癫痫发生组织(51 - 54)。