1. Blázquez-Carballo,Ana Reyes 洛佩兹-内拉寄生虫学和生物医学研究所 - CSIC(西班牙)表达抗炎和抗纤维化神经肽的间充质干细胞:一种治疗自身免疫性心肌炎的新型先进疗法 2. Cerro,Isabel IIS-Fundación Jiménez Díaz(西班牙)聚合免疫球蛋白受体缺陷通过调节巨噬细胞炎症反应减少动脉粥样硬化 3. Chevillard,Cristophe INSERM(法国)线粒体和炎症相关基因中的罕见致病变异导致恰加斯病中的炎症性心肌病 4. Clemente-Casares,阿尔伯塔省泽维尔大学(加拿大)中性粒细胞衍生的激活素 A 在癌症介导的心脏骨骼肌病中的作用 5. Cochain,Clement Paris 心血管研究中心(法国) TREM2 驱动梗死心肌中促纤维化单核细胞衍生的巨噬细胞的积聚 6. Cunha-Neto,圣保罗埃德西奥大学 (巴西) 遗传学和细胞因子诱导的线粒体功能障碍:查加斯病心肌病和其他炎症性心脏病的新范式和治疗靶点 7. De La Cruz,艾丽西亚林雪平大学 (瑞典) 人诱导多能干细胞衍生的心肌细胞研究 PUFA 类似物作为长 QT 综合征的潜在治疗方法 8. De Prado,Lucía CNIO (西班牙) 巨噬细胞中 RagC-mTORC1 激活驱动的意外动脉粥样硬化保护作用 9. Espinosa,赫塔菲大学玛丽亚医院 (西班牙) 有和无阻塞性冠状动脉的心肌梗死中的炎症负担 10. Fantini, Francesca 米兰大学 (意大利) 库普弗细胞线粒体活力的调节会影响全身代谢 11. Galán, Miguel CNIC (西班牙) 巨噬细胞中线粒体转录因子 A 的缺乏会增加对蒽环类药物诱导的心脏毒性的敏感性 12. García, Álvaro CNIC (西班牙) 磷酸调节的 Caveolin-1:在血流介导的动脉壁组成和动脉粥样硬化形成重塑中的作用 13. Gomes, Rita i3S (葡萄牙) 开发一种具有抗炎特性的多功能心肌梗死贴片 14. Gómez, Almudena 马德里康普顿斯大学 (西班牙) miR-149-5p 通过调节 NF-κB 通路在动脉粥样硬化进展中的保护作用
Illana Gozes,Ph.D.教授是特拉维夫大学的教职员工。以前担任Lily和Avraham Gildor主席,以调查生长因素,现在指挥Diana博士和Zelma Elton Laboratory的分子神经内分泌学实验室。Gozes教授目前是欧洲神经化学学会主席和Exonavis Therapeutics Ltd.欧洲神经化学学会和药物开发副总裁。她的开创性研究始于1970年代末和1980年代初,当时她在单个神经元内发现了多种微管蛋白。她证明了这些形式随着脑发育的发展,在突触形成中起着至关重要的作用,并且可以使用单克隆小管蛋白抗体鉴定。在1980年代分子神经科学的最前沿,Gozes教授成为第一个克隆编码血管活性肠肽(VIP)的基因,这是大脑中的关键调节性神经肽。她的研究表明,在突触形成期间的VIP表达增加。在寻求通过VIP激活并促进神经胶质相互作用的蛋白质时,GOZES实验室发现并克隆了一种新型蛋白质:活性依赖性神经保护蛋白(ADNP)。随后的研究确立了ADNP在大脑形成和功能中的重要作用。通过一系列高度引用的文章,Gozes教授表明,ADNP以性别依赖性的方式调节了数千个基本基因,并将其与复杂的重要蛋白质相关联。此外,她在阿尔茨海默氏病中发现了ADNP和相关基因的体细胞突变,并平行于陶氏病。她发现了ADNP在自噬和精神分裂症中的关键作用,揭示了涉及ADNP与shank3和shank3和肌动蛋白关键结合的自闭症中的基本共同机制,并显示ADNP对微管动力学的调节和TAU相互作用,可防止Tauopathy。她在ADNP缺陷小鼠模型上的开创性工作预测了ADNP综合征,ADNP综合征是一种自闭症/智力障碍综合征,由ADNP中的从头突变驱动并呈现tauopathy。Gozes教授采取了一种还原主义的方法来发现ADNP的活跃地点,从而导致了研究性药物Davunetide(NAP)的发展。这种化合物在保护动物模型和临床试验中预防ADNP缺乏/突变方面已显示出希望。它已经在患有纯净的tauopathy的进行性核上麻痹(PSP)的妇女中进行了测试,并且在患有阿尔茨海默氏症前后病的个体中,以性别依赖性的方式表现出了影响。精神分裂症患者显示了进一步的承诺,这表明现实世界中的问题解决和任务绩效的改善。我们很荣幸Gozes教授同意与我们的读者分享她的人生旅程。
神经肽甘丙肽是所谓甘丙肽系统的重要成员。尽管自其发现以来已经过去了 40 年(Tatemoto 等人,1983 年),但仍有许多生物过程中甘丙肽的作用尚未完全了解(Jiang 和 Zheng,2022 年;Zhu 等人,2022 年)。甘丙肽作为神经递质的多效性作用包括参与调节睡眠和觉醒过程、行为过程、焦虑、学习和记忆、疼痛和伤害感受以及其他过程。甘丙肽系统还被发现在许多外周器官功能中发挥重要作用,特别是在心脏和心血管系统、胰腺和胃肠系统以及骨骼、结缔组织和皮肤中(Lang 等人,2015 年;Š ípková 等人,2017 年)。甘丙肽的多种作用不仅在典型的生理条件下明显,而且在病理环境中也很明显(Gopalakrishnan 等人,2021 年)。甘丙肽介导的信号传导的多效性和复杂性基于三种不同的 G 蛋白偶联受体(GPCR)的存在,即 GalR1、GalR2 和 GalR3,它们通过不同的途径传递生物信号(Jiang 和 Zheng,2022 年)。此外,多年来发现了与甘丙肽分子具有部分同源性的新配体:GALP(甘丙肽样肽)和阿拉林。根据目前的知识,只有 GALP 能够激活甘丙肽受体,即 GalR2/GalR3,而阿拉林却不能,尽管它们具有部分同源性。阿拉林的特定受体尚不清楚(Fang 等人,2020 年;Abebe 等人,2022 年)。甘丙肽系统的最新成员是 spexin,它是一种具有多效性功能的小肽,可以激活人类 GalR2 和 GalR3 受体(Behrooz 等人,2020 年)。有多项研究描述了甘丙肽系统在代谢、食物摄入和肥胖中的重要作用。甘丙肽通过刺激 GalR1 在下丘脑中的活动会导致脂肪摄入增加。此外,它还有刺激正反馈的能力,从而导致过量脂肪摄入和肥胖(Marcos 和 Coveñas,2021 年)。这种失调可能会导致葡萄糖不耐受,从而导致 2 型糖尿病 (T2DM) 和代谢综合征(Fang 等人,2012 年)。类似地,脂肪摄入和摄食行为也可以通过 GALP 的活性进行改变 ( Takenoya 等人,2018 年)。最后,还证实了 spexin 在调节食物摄入、饱腹感以及随后的肥胖风险方面的作用 ( Behrooz 等人,2020 年)。Spexin 还被证明可以在体内和体外减轻高脂饮食 (HFD) 诱发的小鼠肝脂肪变性 ( Jasmine 等人,2016 年)。
睡眠和药物滥用互连的神经生物学,使一个过程的改变对另一个过程产生了影响。急性暴露于虐待药物中,通过影响睡眠潜伏期,持续时间和质量来破坏睡眠[1]。随着长期给药的,睡眠破坏变得更加严重,在戒酒期间,失眠症患有负面影响,这会驱动药物渴望并有助于冲动和复发。与药物滥用相关的睡眠障碍也导致上瘾的个体的认知功能障碍。此外,由于睡眠在记忆巩固和灭绝过程中很重要,因此睡眠功能障碍可能会干扰恢复所需的非强化药物关联的学习。值得注意的是,阿片类药物,酒精或尼古丁成瘾的当前药物疗法不会逆转睡眠功能障碍,这可能是恢复的障碍[2,3]。虽然接触滥用药物是进一步促进长期使用的睡眠功能障碍的因果,而睡眠障碍反过来又是滥用药物的危险因素,其严重程度可以预测药物使用障碍的预后(SUD)[4]。睡眠中断导致促进药物滥用的危险因素的累积,包括增加对疼痛的敏感性,充当压力源以及对负面影响的偏见。识别和治疗睡眠障碍可能是针对未来药物滥用和SUD的重要预防措施。尽管有收敛的证据将睡眠和药物滥用联系起来,并且可以从阐明这种联系的生物学中带来的治疗潜力,但这是一个相对忽视的研究领域。促进该领域的第一个步骤是确定如何调节睡眠和唤醒的电路和底物与调解奖励的人以及如何被滥用药物瞄准的电路。基因座(LC) - 去甲肾上腺素(NE)系统是一种弥漫性前脑预测系统,涉及唤醒,也是滥用药物的主要目标,包括尼古丁,刺激剂,阿片类药物和大麻素。lc - NE神经元活性与唤醒状态呈正相关,而LC神经元在醒来时最活跃,并且在REM睡眠期间脱离[5]。选择性LC激活对引起皮质唤醒有足够的能力,相反,选择性LC抑制可阻止压力源的皮质激活,这表明该系统对于响应压力源和其他显着性刺激而调节皮质唤醒很重要[6,7]。与压力相关的神经肽,皮质激素释放因子(CRF),介导了应激诱导的LC兴奋和内一菌的阿片类药物,这些阿片类药物支配LC会产生相反的作用,可以抑制过度激活并促进压力终止后的恢复[8]。阿片类药物的耐受性有望增强这种唤醒系统的压力诱导的激活,并促进寻求降低过度反应的药物循环。LC神经元在阿片类药物提取过程中被强大激活,这意味着
主管:法国里昂,CRCN INSERM / WELLCOME研究员Vincent Magloire / Wellcome研究员,法国里昂。电子邮件:vincent.magloire@inserm.fr网站:https://www.ibexlaboratory.com/项目标题:生理和癫痫脑状态期间神经调节剂的时空动力学。项目摘要:博士后/工程师的职位集成在惠康研究计划神经景观的框架内。尽管精力数十年,我们仍然无法准确预测癫痫发作。患者全天经历癫痫发作变化的倾向,受大脑状态的影响。因此,癫痫发作不仅取决于可预测的昼夜节律,而且还取决于随机大脑状态。神经元兴奋性的关键调节剂,即神经递质(NTS)和神经调节剂(NMS),也受到昼夜节律和大脑状态的强烈调节,因此通过跟踪其波动,我们应该能够更好地理解和预测癫痫发作。在这种情况下,我们有几个有关与睡眠 - 觉醒周期,昼夜节律以及与癫痫发作有关的与睡眠循环,昼夜节律以及压力相关的神经化学环境(神经肽和神经调节剂)的项目。该项目将在颞叶癫痫的啮齿动物模型中使用高级成像方法进行(例如多站点光度法)结合多个多摄影(EEG,EMG)和视频监测。该项目还将涉及对大型数据集的操纵,并可能与计算神经科学家合作开发机械神经模型。我们将利用新开发的遗传编码的神经递质指标和遗传编码的钙传感器来监测整天在对照和环尿动物中全天在不同大脑结构中所选NTS/NMS的细胞外波动和不同脑结构中的神经元活性。The candidate will also have the possibility to go to international meetings as well as do short stays abroad in particular at UCL, London where we have ongoing collaborations with the department of Clinical and Experimental Epilepsy ( https://www.ucl.ac.uk/ion/research/research-departments/department-clinical-and- experimental-epilepsy ).研究环境:我们的研究小组位于法国里昂的癫痫研究所和神经科学研究中心(研究小组:https://www.ibexlaboratoration.com/; https://wwwwww.crnl.fr/fr/fr/fr/equipe/tiger/tiger/)。我们嵌入了一个非常动态和协作的环境中,有更多450名成员在成像,电生理学,分子生物学和行为方面的专业知识,从亚细胞水平到认知和诊所(CRNL:https://wwwwww.crnl.fr)。我们有定期的期刊俱乐部和实验室会议以及有关神经科学主题广泛的研讨会。更普遍地,里昂是充满活力的国际城市,拥有3所大学,距巴黎(2H),日内瓦(〜1.5H)和马赛(Marseille)(〜1H)以及阿尔卑斯山和地中海的主要城市仅几个小时。
简介肥胖是一种慢性、复发性、神经行为疾病,具有遗传 1-3 或表观遗传 4,5 基础。肥胖会增加患几种慢性疾病(包括 2 型糖尿病、高血压、血脂异常和心血管疾病)和过早死亡的风险。6 肥胖的遗传基础解释了为什么强大的生理机制会坚决保护体重。要了解身体如何保护体重,首先必须了解体重是如何调节的。体重由下丘脑控制。在下丘脑的弓状核中,有两种类型的神经元。一种类型表达神经肽 Y (NPY) 和刺鼠相关蛋白 (AgRP),它们都会刺激饥饿感。另一种类型的神经元表达促阿片黑素皮质素 (POMC)(从中裂解出 α 黑素细胞刺激激素 [α MSH])以及可卡因和苯丙胺调节转录本 (CART)。 α MSH 和 CART 均能抑制饥饿感。在一天中的任何特定时间,这些神经元的活动决定了我们是否想吃东西。那么问题是什么控制着这些弓状核神经元的活动呢?弓状核有许多输入,包括来自位于脑干的孤束核、愉悦通路和皮质。此外,十种循环激素也会影响这些特定神经元的活动,从而调节食物摄入量。这些激素来自肠道、胰腺和脂肪。令人惊讶的事实是,这些激素中只有一种(生长素释放肽)会刺激饥饿感,而九种(瘦素、胆囊收缩素、肽 YY、胰高血糖素样肽-1、胃泌酸调节素、尿鸟苷素、胰岛素、胰淀素和胰多肽)会抑制饥饿感!肥胖为何会复发? 1994 年发现瘦素后不久,人们发现这种抑制饥饿的激素水平在节食减肥后会急剧下降。7 相反,刺激饥饿的激素生长素释放肽的水平在减肥后会增加。8 随后的研究显示,减肥后餐后胆囊收缩素的水平也会降低。9 这些变化会导致饥饿感增加。2011 年,研究证明其他调节饥饿的激素也会朝着增加饥饿感的方向变化,而且这些变化是长期的。10 这些反馈回路解释了为什么减肥效果很难长期保持,以及为什么生活方式的建议只能导致适度的减肥。正是由于这个原因,抑制饥饿的药物对于减肥来说是必要的,更重要的是,对于长期维持体重来说也是如此。肥胖症的药物治疗当作为生活方式干预的辅助手段时,减肥药物可以增加实现临床有意义的(≥5%)减肥的可能性,并降低体重反弹的可能性,包括减肥手术后。11 药物治疗比单纯改变生活方式更能达到减肥的效果,并且有利于防止体重反弹。12
1。Long,H。K.,Prescott,S。L.&Wysocka,J。不断变化的景观:开发和进化中的转录增强子。单元格167,1170–1187(2016)。2。Nora,E。P。等。 X灭活中心的调节景观的空间分区。 自然485,381–385(2012)。 3。 Dixon,J。R.等。 通过分析染色质相互作用鉴定的哺乳动物基因组中的拓扑结构域。 自然485,376–380(2012)。 4。 Wray,G。A. 顺式调节突变的进化意义。 nat。 修订版 基因。 8,206–216(2007)。 5。 Lopez-Rios,J。等。 PTCH1对SHH的衰减感下牛四肢的演变。 自然511,46–51(2014)。 6。 Sanetra,M.,Begemann,G.,Becker,M.-B。 &Meyer,A。 在发展计划中的保护和合作:同源关系的重要性。 正面。 Zool。 2,15(2005)。 7。 McLennan,D。A. 合作的概念:为什么进化通常看起来奇迹般。 Evol。 教育。 外展1,247–258(2008)。 8。 Holland,L。Z.整个基因组重复后新字符的演变:来自Amphioxus的见解。 semin。 单元格开发。 生物。 24,101–109(2013)。 9。 Jandzik,D。等。 自然518,534–537(2015)。 10。 11。 12。Nora,E。P。等。X灭活中心的调节景观的空间分区。自然485,381–385(2012)。3。Dixon,J。R.等。通过分析染色质相互作用鉴定的哺乳动物基因组中的拓扑结构域。自然485,376–380(2012)。4。Wray,G。A.顺式调节突变的进化意义。nat。修订版基因。8,206–216(2007)。 5。 Lopez-Rios,J。等。 PTCH1对SHH的衰减感下牛四肢的演变。 自然511,46–51(2014)。 6。 Sanetra,M.,Begemann,G.,Becker,M.-B。 &Meyer,A。 在发展计划中的保护和合作:同源关系的重要性。 正面。 Zool。 2,15(2005)。 7。 McLennan,D。A. 合作的概念:为什么进化通常看起来奇迹般。 Evol。 教育。 外展1,247–258(2008)。 8。 Holland,L。Z.整个基因组重复后新字符的演变:来自Amphioxus的见解。 semin。 单元格开发。 生物。 24,101–109(2013)。 9。 Jandzik,D。等。 自然518,534–537(2015)。 10。 11。 12。8,206–216(2007)。5。Lopez-Rios,J。等。PTCH1对SHH的衰减感下牛四肢的演变。 自然511,46–51(2014)。 6。 Sanetra,M.,Begemann,G.,Becker,M.-B。 &Meyer,A。 在发展计划中的保护和合作:同源关系的重要性。 正面。 Zool。 2,15(2005)。 7。 McLennan,D。A. 合作的概念:为什么进化通常看起来奇迹般。 Evol。 教育。 外展1,247–258(2008)。 8。 Holland,L。Z.整个基因组重复后新字符的演变:来自Amphioxus的见解。 semin。 单元格开发。 生物。 24,101–109(2013)。 9。 Jandzik,D。等。 自然518,534–537(2015)。 10。 11。 12。PTCH1对SHH的衰减感下牛四肢的演变。自然511,46–51(2014)。6。Sanetra,M.,Begemann,G.,Becker,M.-B。 &Meyer,A。 在发展计划中的保护和合作:同源关系的重要性。 正面。 Zool。 2,15(2005)。 7。 McLennan,D。A. 合作的概念:为什么进化通常看起来奇迹般。 Evol。 教育。 外展1,247–258(2008)。 8。 Holland,L。Z.整个基因组重复后新字符的演变:来自Amphioxus的见解。 semin。 单元格开发。 生物。 24,101–109(2013)。 9。 Jandzik,D。等。 自然518,534–537(2015)。 10。 11。 12。Sanetra,M.,Begemann,G.,Becker,M.-B。&Meyer,A。在发展计划中的保护和合作:同源关系的重要性。正面。Zool。2,15(2005)。7。McLennan,D。A.合作的概念:为什么进化通常看起来奇迹般。Evol。教育。外展1,247–258(2008)。8。Holland,L。Z.整个基因组重复后新字符的演变:来自Amphioxus的见解。semin。单元格开发。生物。24,101–109(2013)。 9。 Jandzik,D。等。 自然518,534–537(2015)。 10。 11。 12。24,101–109(2013)。9。Jandzik,D。等。 自然518,534–537(2015)。 10。 11。 12。Jandzik,D。等。自然518,534–537(2015)。10。11。12。新脊椎动物头的进化是通过古老的脊柱骨骼组织的选择。Chuong,E。B.,Elde,N。C.&Feschotte,C。通过合作的内源性逆转录病毒对先天免疫的调节性进化。科学351,1083–1087(2016)。Real,F。M.等。 摩尔基因组揭示了与适应性性交相关的调节重排。 科学370,208–214(2020)。 迈凯轮,A。小鼠中的原始生殖细胞。 dev。 生物。 262,1-15(2003)。 13。 Ramisch,A。等。 crup:一个综合框架,可预测特定条件的监管单位。 基因组生物。 20,227(2019)。 14。 Adrian,T。E.等。 神经肽在人脑中的分布。 自然306,584–586(1983)。 15。 Körner,M.,Waser,B.,Thalmann,G。N.&Reubii,J。C.人类睾丸中NPY受体的高表达。 mol。 单元格。 内分泌。 337,62–70(2011)。 16。 Sweetman,D。&Münsterberg,A。 发育和疾病中的脊椎动物尖顶基因。 dev。 生物。 293,285–293(2006)。 17。 Nishinakamura,R。&Takasato,M。Sall1在肾脏发展中的重要作用。 肾脏Int。 68,1948–1950(2005)。 18。 Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。 &Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。 nat。 基因。 19。Real,F。M.等。摩尔基因组揭示了与适应性性交相关的调节重排。科学370,208–214(2020)。迈凯轮,A。小鼠中的原始生殖细胞。dev。生物。262,1-15(2003)。 13。 Ramisch,A。等。 crup:一个综合框架,可预测特定条件的监管单位。 基因组生物。 20,227(2019)。 14。 Adrian,T。E.等。 神经肽在人脑中的分布。 自然306,584–586(1983)。 15。 Körner,M.,Waser,B.,Thalmann,G。N.&Reubii,J。C.人类睾丸中NPY受体的高表达。 mol。 单元格。 内分泌。 337,62–70(2011)。 16。 Sweetman,D。&Münsterberg,A。 发育和疾病中的脊椎动物尖顶基因。 dev。 生物。 293,285–293(2006)。 17。 Nishinakamura,R。&Takasato,M。Sall1在肾脏发展中的重要作用。 肾脏Int。 68,1948–1950(2005)。 18。 Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。 &Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。 nat。 基因。 19。262,1-15(2003)。13。Ramisch,A。等。crup:一个综合框架,可预测特定条件的监管单位。基因组生物。20,227(2019)。14。Adrian,T。E.等。神经肽在人脑中的分布。自然306,584–586(1983)。15。Körner,M.,Waser,B.,Thalmann,G。N.&Reubii,J。C.人类睾丸中NPY受体的高表达。 mol。 单元格。 内分泌。 337,62–70(2011)。 16。 Sweetman,D。&Münsterberg,A。 发育和疾病中的脊椎动物尖顶基因。 dev。 生物。 293,285–293(2006)。 17。 Nishinakamura,R。&Takasato,M。Sall1在肾脏发展中的重要作用。 肾脏Int。 68,1948–1950(2005)。 18。 Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。 &Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。 nat。 基因。 19。Körner,M.,Waser,B.,Thalmann,G。N.&Reubii,J。C.人类睾丸中NPY受体的高表达。mol。单元格。内分泌。337,62–70(2011)。16。Sweetman,D。&Münsterberg,A。发育和疾病中的脊椎动物尖顶基因。dev。生物。293,285–293(2006)。 17。 Nishinakamura,R。&Takasato,M。Sall1在肾脏发展中的重要作用。 肾脏Int。 68,1948–1950(2005)。 18。 Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。 &Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。 nat。 基因。 19。293,285–293(2006)。17。Nishinakamura,R。&Takasato,M。Sall1在肾脏发展中的重要作用。 肾脏Int。 68,1948–1950(2005)。 18。 Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。 &Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。 nat。 基因。 19。Nishinakamura,R。&Takasato,M。Sall1在肾脏发展中的重要作用。肾脏Int。 68,1948–1950(2005)。 18。 Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。 &Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。 nat。 基因。 19。肾脏Int。68,1948–1950(2005)。 18。 Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。 &Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。 nat。 基因。 19。68,1948–1950(2005)。18。Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。 &Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。 nat。 基因。 19。Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。&Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。nat。基因。19。18,81–83(1998)。 MA,Y。等。 sall1在人垂体 - 肾上腺/性腺轴中的表达。 J.内分泌。 173,437–448(2002)。 20。 Nicol,B。等。 全基因组的鉴定FOXL2结合和FOXL2在胎儿性腺中女性化作用的表征。 哼。 mol。 基因。 27,4273–4287(2018)。18,81–83(1998)。MA,Y。等。 sall1在人垂体 - 肾上腺/性腺轴中的表达。 J.内分泌。 173,437–448(2002)。 20。 Nicol,B。等。 全基因组的鉴定FOXL2结合和FOXL2在胎儿性腺中女性化作用的表征。 哼。 mol。 基因。 27,4273–4287(2018)。MA,Y。等。sall1在人垂体 - 肾上腺/性腺轴中的表达。J.内分泌。173,437–448(2002)。 20。 Nicol,B。等。 全基因组的鉴定FOXL2结合和FOXL2在胎儿性腺中女性化作用的表征。 哼。 mol。 基因。 27,4273–4287(2018)。173,437–448(2002)。20。Nicol,B。等。 全基因组的鉴定FOXL2结合和FOXL2在胎儿性腺中女性化作用的表征。 哼。 mol。 基因。 27,4273–4287(2018)。Nicol,B。等。全基因组的鉴定FOXL2结合和FOXL2在胎儿性腺中女性化作用的表征。哼。mol。基因。27,4273–4287(2018)。27,4273–4287(2018)。
1. Dodick DW。偏头痛。柳叶刀。2018;391(10127):1315-1330。2. Sprenger T、Viana M、Tassorelli C。目前预防偏头痛的药物及其潜在作用机制。神经治疗学。2018;15(2):313-323。3. Goadsby PJ、Edvinsson L、Ekman R。偏头痛期间人类脑外循环中的血管活性肽释放。神经病学年鉴。1990;28(2):183-187。4. Goadsby PJ、Edvinsson L。三叉神经血管系统和偏头痛:研究人类和猫的脑血管和神经肽变化。神经病学年鉴。1993;33(1):48-56。 5. Lassen LH、Haderslev PA、Jacobsen VB、Iversen HK、Sperling B、Olesen J。CGRP 可能在偏头痛中起致病作用。头痛。 2002;22(1):54-61。 6. Ho TW,Edvinsson L,Goadsby PJ。 CGRP 及其受体为偏头痛病理生理学提供了新的见解。纳特·尼罗尔牧师。 2010;6(10):573-582。 7. Goadsby PJ、Reuter U、Hallström Y 等人。 erenumab 治疗阵发性偏头痛的对照试验。新英格兰医学杂志。 2017;377(22):2123-2132。 8. Dodick DW、Ashina M、Brandes JL 等人。 ARISE:erenumab 治疗发作性偏头痛的 3 期随机试验。Cephalalgia。2018;38(6):1026-1037。9. Reuter U、Goadsby PJ、Lanteri-Minet M 等人。erenumab 对既往两至四种预防性治疗无效的发作性偏头痛患者的疗效和耐受性:一项随机、双盲、安慰剂对照的 3b 期研究。Lancet。2018;392(10161):2280-2287。10. Tepper S、Ashina M、Reuter U 等人。erenumab 用于预防性治疗慢性偏头痛的安全性和疗效:一项随机、双盲、安慰剂对照的 2 期试验。Lancet Neurol。 2017;16(6):425-434。11. Barbanti P、Aurilia C、Egeo G 等人。Erenumab 在预防高频发作性和慢性偏头痛中的作用:Erenumab 在意大利的真实生活中的应用(EARLY),这是意大利首个多中心前瞻性真实生活研究。头痛。2021;61(2):363-372。12. Garces F、Mohr C、Zhang LI 等人。从分子层面深入了解偏头痛预防疗法 Aimovig(Erenumab)对 CGRPR 复合物的识别。Cell Rep。2020;30(6):1714-23.e6。13. Roden DM、McLeod HL、Relling MV 等人。药物基因组学。柳叶刀。2019;394(10197):521-532。 14. 国际头痛学会(IHS)头痛分类委员会国际头痛疾病分类。头痛。2018;38(1):1-211。15. Stewart WF、Lipton RB、Dowson AJ、Sawyer J。开发和测试偏头痛残疾评估(MIDAS)问卷以评估头痛相关残疾。神经病学。2001;56(6 Suppl. 1):S20-S28。16. Houts CR、Wirth RJ、McGinley JS 等人。HIT-6 作为偏头痛患者头痛影响测量标准的内容效度:叙述性综述。头痛。2020;60(1):28-39。17. Cheng S、Jenkins B、Limberg N、Hutton E。Erenumab 治疗慢性偏头痛:澳大利亚经验。头痛。 2020;60(10):2555-2562。