图 1 自主神经病变的诊断方法。CV,心血管;GI,胃肠道;GU,泌尿生殖系统;ED,勃起功能障碍;ARS,自主神经反射筛查;ECG,心电图;TST,体温调节发汗测试;MR,磁共振;PNS,周围神经系统;CNS,中枢神经系统;NMDA,抗 N-甲基 D-天冬氨酸 (NMDA) 脑炎;OH,直立性低血压;NCS,神经传导研究;AAG,自身免疫性自主神经节病;LEMS,兰伯特·伊顿重症肌无力综合征;ANNA-1,抗神经元核抗体 1 型;CRMP-5,Collapsin 反应介质蛋白 5;ANA,抗核抗原;ENA,可提取性核抗原;GBS,格林-巴利综合征;AASN,急性自主神经和感觉神经病变; TIND,治疗引起的糖尿病神经病变;AL,获得性轻链;TTR,转甲状腺素蛋白;HSAN,遗传性感觉自主神经病变;TTG,组织型转谷氨酰胺酶;IENFD,表皮内神经纤维密度;POTS,体位性心动过速综合征;OH,直立性低血压;SBP,收缩压;DBP,舒张压
鉴于视网膜健康与神经退行性疾病之间的已知相关性,深度学习算法可能能够从视网膜图像中获得有关脑疾病的信息。15的确,越来越多的文献证明了神经退行性疾病的进展与医生观察的视网膜发现之间的相关性,例如视网膜小动脉和静脉口径,血管折磨,视网膜层厚度,视网膜层厚度和光盘椎间盘形态学。16未来的研究可能会集中于确定光学相干断层扫描(OCT),OCT血管造影(OCT-A)和彩色眼底图像中包含的信息。15此类研究还需要考虑无法从视网膜成像中获得哪些信息。10月,Act-a和底面成像允许对视网膜特征进行详细的定量和定性分析。OCT使用光的反射率来微图像视网膜和视盘的解剖结构。周围乳腺视网膜神经纤维层(PRNFL)和黄斑神经节细胞层和内丛状层(MGCIPL)特别涉及神经退行器态,而其他标记,例如黄斑体积和脉络膜厚度,也已研究。OCT-A通过在时间上比较视网膜层
从大脑活动中解码图像一直是一个挑战。由于深度学习的发展,有可用的工具来解决这个问题。解码图像旨在将神经脉冲序列映射到低级视觉特征和高级语义信息空间。最近,有一些从脉冲序列解码的研究,然而,这些研究较少关注神经科学的基础,很少有研究将感受野合并到视觉图像重建中。在本文中,我们提出了一种具有生物特性的深度学习神经网络架构,从脉冲序列重建视觉图像。据我们所知,我们首次实现了一种将感受野属性矩阵集成到损失函数中的方法。我们的模型是一个从神经脉冲序列到图像的端到端解码器。我们不仅将 Gabor 滤波器合并到用于生成图像的自动编码器中,还提出了具有感受野特性的损失函数。我们在两个数据集上评估了我们的解码器,这两个数据集包含猕猴初级视觉皮层神经脉冲和蝾螈视网膜神经节细胞 (RGC) 脉冲。我们的结果表明,我们的方法可以有效地结合感受野特征来重建图像,为基于神经信息的视觉重建提供了一种新方法。
一种神经系统疾病,其特征是腿部和手臂逐渐衰弱,感觉功能受损。这种疾病有时被称为慢性复发性多发性神经病。慢性表示该病持续很长一段时间。炎症表示神经损伤是由于炎症而发生的,炎症是一个涉及免疫系统的复杂过程。脱髓鞘表示损伤影响神经纤维周围的蛋白质涂层(髓鞘)。多发性神经根神经病意味着这种疾病影响了不止一条神经。利妥昔单抗是一种针对 CD-20 的单克隆抗体,CD-20 是一种广泛表达于 B 细胞的细胞表面标志物,可导致 B 细胞耗竭。MMN 是一种影响人体运动神经的免疫介导性神经病。这些神经控制肌肉,这种疾病使它们难以发送电信号,导致手臂和腿部感到虚弱,引起肌肉痉挛、痉挛和抽搐。MMN 并不致命,在大多数情况下,治疗可以使肌肉更强壮,尽管这种疾病仍然缓慢进展。血管炎周围神经系统血管的炎症,也称为非系统性血管炎性神经病 (NSVN),血管炎仅限于周围神经系统 - 神经系统的一部分,由大脑和脊髓外部的神经和神经节组成。
尽管进行了广泛的文献综述,但2-4综合征对此很了解。尤其是视觉萎缩的自然史,其病理学位和发病机理尚不清楚。在Wolfram的最初描述中,两个长老分别在6和8年时表现不佳,10年后进行检查时,敏锐度减少到手指的计数。该综合征的病例报告所包含的患者太少,无法进行概括。文献综述尚未阐明视际萎缩是否是正常视力时期或始终是渐进的,如果是的,则在什么时间段内。在视觉途径中的病理部位上存在混乱:在一系列7例患者中,发现1例患有色素性视网膜营养不良。5后来对19例患者的电图(ERG)发现的综述得出结论,视觉障碍主要是由于神经节细胞和神经纤维层的病变。6例进一步的患者患有正常的ERG,但视觉异常引起的电位,表明视网膜不参与发病机理?对一名患者的一项验尸研究表明,视神经,chiasm,chiasm,束和辐射的萎缩,严重的轴突破坏和脱髓鞘,以及上丘的数量减少的神经细胞和横向遗传体的数量减少。8
以及世界各地。开发缓释制剂和装置以及更长效的药物是解决这些问题的一些方法。然而,还没有任何迹象表明这些方法中的任何一种可以带来永久性的治疗。基因疗法有可能永久降低 VEGF-A 水平并消除频繁玻璃体内注射的需要。基因增强和基因沉默方法都已用于降低 VEGF-A 水平。4 – 6 基因沉默尚未进入人体临床试验,但使用 microRNA 和 shRNA 的体外和体内研究已证明在降低 VEGF 方面取得了一些成功。7 – 9 近年来,成簇的规律间隔的短回文重复序列 (CRISPR) 相关蛋白 9 (Cas9) 已用于破坏视网膜色素上皮 (RPE) 细胞和小鼠视网膜中的 VEGF-A 基因。 10 – 12 在视网膜中,VEGF 在 Muller 细胞、RPE 细胞、神经节细胞以及视网膜和脉络膜血管中持续表达;在病理性血管生成状态下,这种表达显著增加。13、14 我们研究的目的是评估 VEGF-A 基因破坏对 Muller 细胞和 RPE 细胞的影响,这两者都是眼睛中主要的 VEGF 产生者。我们使用了通过脂质体 CRISPRMAX (LCM) 递送的 CRISPR-Cas9 核糖核蛋白 (RNP)。
越来越多的文献报道了肽受体放射性核素治疗 (PRRT) 与其他抗肿瘤治疗的联合使用,以期产生协同效应,但可能增加安全性问题。增强 PRRT 结果的联合治疗基于改善肿瘤灌注、上调生长抑素受体 (SSTR)、使用 DNA 损伤剂进行放射增敏或靶向治疗。目前有几项 1 期或 2 期试验正在招募联合治疗方案的患者。PRRT 与细胞毒性化疗、卡培他滨和替莫唑胺 (CAPTEM) 的联合使用似乎具有临床应用价值,尤其是在胰腺神经内分泌肿瘤 (pNET) 中,且安全性可接受。目前正在进行的临床试验正在测试术前新辅助 PRRT、静脉和动脉内应用途径的 PRRT 组合、PRRT 与不同放射性标记(α、β、Auger)SSTR 靶向激动剂和拮抗剂的组合、免疫检查点抑制剂 (ICI)、聚(ADP-核糖)聚合酶-1 (PARP1i)、酪氨酸激酶 (TKI)、DNA 依赖性蛋白激酶、核苷酸还原酶或 DNA 甲基转移酶 (DMNT)。在罕见的 NET(如副神经节瘤、嗜铬细胞瘤)中与 [ 131 I]I-MIBG 的组合以及新的非 SSTR 靶向放射性配体用于个性化治疗过程。本综述将概述正在进行的 PRRT 联合治疗的现状。
(onasengene abeparvovec)获得FDA和EMA的批准,用于体内腺相关病毒介导的基因替代疗法,用于脊柱肌肉萎缩。EMA批准Libmeldy®不久,这是一种用慢病毒载体转导的自体CD34阳性干细胞的体内基因疗法,用于治疗定向白细胞症。这些成功可能是发展中许多新的基因疗法的首次,这些基因疗法主要是针对基因置换术的丧失功能丧失突变疾病(例如,甲状腺癌疾病,粘多糖糖糖,神经节蛋白),或者较少,较少的毒性突变疾病,通过毒性 - 官能突变疾病,通过毒性突变疾病,通过疗法的疗法(及其疗法)的疗法(及其疗法)(amp ef)(am)。硬化症,亨廷顿氏病)。此外,正在探索某些疾病的基因组编辑作为基因疗法的使用,但到目前为止,这种疾病仅在治疗粘多糖治疗时才进行了临床测试。基于针对罕见的遗传中枢神经系统疾病的大量计划,持续和完成的临床试验,可以预期,几种新型基因疗法将获得批准并在不久的将来获得。对于这种情况的深入表征,对应用基因治疗平台的短期和长期影响,安全方面和药效学的深入表征。
Tay-Sachs病是一种遗传疾病,由于HEXA酶缺乏症而影响中枢神经系统,导致GM2神经节积累和进行性神经系统衰减。最初由沃伦·泰(Waren Tay)和伯纳德·萨克斯(Bernard Sachs)在阿什肯纳兹犹太人人群中记录下来,该疾病表现出三种类型:婴儿,少年和晚发,每种症状发作和进展不同。当前的疗法主要支持症状管理,并正在进行的研究探讨各种治疗策略。酶替代疗法(ERT)旨在替代非功能性HEXA酶,尽管在越过血脑屏障方面存在挑战。底物还原疗法(SRT)试图抑制GM2神经毒剂的合成,Miglustat等化合物表现出潜在但有限的临床成功。引入功能性HEXA基因的基因疗法在动物研究中表现出了希望,而药理学伴侣旨在稳定错误折叠的酶并增加其活性。尽管当前治疗的限制,但这些领域的研究发展为改善受Tay-Sachs疾病影响的人的预后提供了希望,强调需要继续调查以增强治疗功效和患者生活质量。替代策略(例如基因疗法和药理剂)的进步可能在管理这种罕见状态中发挥关键作用。
摘要含有α6亚基的A型A型氨基丁酸A型(GABA A)位于三叉神经节中,并且通过小干扰RNA的减少会增加大鼠的炎性颞下颌和肌毛的炎症。因此,我们假设增强其活性可能有助于源自三叉神经系统的神经性综合征。在这里,我们对两个最近开发的结构上相似的吡唑唑喹啉酮com-compuss进行了详细的电生理和药代动力学分析。在重组大鼠α6β3γ2,α6β3δ和α6β3受体下,浓度低于1 µm的浓度下的DK -I -56-1在1 µM以下增强的γ-氨基丁酸(GABA)电流,而在大多数GABA A受体亚型中,它在包含其他α子un的大多数GABA A受体亚型中都是不活跃的。dk -i -87-1在浓度以下的浓度低于1 µm时在含α6的受体下无活性,仅研究了弱调节的其他GABA A受体。DK-I-56-1的血浆和脑组织动力学相对较慢,半个世纪分别为6和13小时,从而使估计的自由脑浓度在10-300 nm范围内的持续性持续到整个24 hr时期。在两种方案中获得了两种慢性狭窄损伤的肌肌甲型肌肌神经的结果