具有足够规模和复杂程度的量子计算机(也称为密码分析相关量子计算机 (CRQC))威胁着非对称加密的安全性。尽管尚不清楚这种计算机的确切到来时间,但对受非对称加密保护的信息的威胁现在就存在,因为对手可以收集当前加密的数据,并在有足够的量子计算时破解它。非对称加密,即同时使用公钥和私钥的加密,在联邦政府、州、地方、部落和领土政府 (SLTT) 以及美国关键基础设施中无处不在。
最近,对于特定类别的高级原语:阈值密码学引起了人们的兴趣。阈值密码学是一种密码学中的一种技术,其中秘密(例如私钥)分为多个部分,并且只需要这些部分的子集(或阈值)才能执行加密操作。阈值密码学的目的是通过在多方之间分配信任,而不是依靠单个个人或系统来提高安全性和容错性。NIST首次呼吁多方阈值方案[3]证明了研究界对阈值密码学的兴趣,其中还包括针对抗量子完全同构加密的子类别。
3 n 1/4通过持续分数方法,其中n = pq是RSA模量。后来,Coppersmith [3]提出了一种基于晶格的RSA隐脑分析技术。Coppersmith的方法为基于晶格的RSA分析提供了许多深入研究。在[4]中,Boneh和Durfee将绑定扩展到d 292用于通过新的基于晶格的方法进行小型私人指数攻击。 在2010年,Herrmann和May [5]采用了一种更简单,更有效的方法来实现相同的绑定d 292。 尽管进行了几项努力[6,7],d 292仍然是最好的界限。 但是,已经证明,在部分知识泄漏的放松状态下,可以改善界限。 [8]中,Boneh,Durfee和Frankel引入了对RSA的部分关键暴露攻击的概念。 它解决了攻击者获得私人指数d的一些位的情况。 Ernst等。 [9]提出了一部分键暴露攻击,并了解了n 0范围内的私钥D最重要的位(MSB)。 284 后来,Takayasu和Kunihiro [10]覆盖了N 0。 292 可以将部分钥匙曝光攻击应用于各种情况,包括模量N的Prime除数P或Q的泄漏,或其SUM P + Q等[11-13]。292用于通过新的基于晶格的方法进行小型私人指数攻击。在2010年,Herrmann和May [5]采用了一种更简单,更有效的方法来实现相同的绑定d 292。 尽管进行了几项努力[6,7],d 292仍然是最好的界限。 但是,已经证明,在部分知识泄漏的放松状态下,可以改善界限。 [8]中,Boneh,Durfee和Frankel引入了对RSA的部分关键暴露攻击的概念。 它解决了攻击者获得私人指数d的一些位的情况。 Ernst等。 [9]提出了一部分键暴露攻击,并了解了n 0范围内的私钥D最重要的位(MSB)。 284 后来,Takayasu和Kunihiro [10]覆盖了N 0。 292 可以将部分钥匙曝光攻击应用于各种情况,包括模量N的Prime除数P或Q的泄漏,或其SUM P + Q等[11-13]。292。尽管进行了几项努力[6,7],d 292仍然是最好的界限。 但是,已经证明,在部分知识泄漏的放松状态下,可以改善界限。 [8]中,Boneh,Durfee和Frankel引入了对RSA的部分关键暴露攻击的概念。 它解决了攻击者获得私人指数d的一些位的情况。 Ernst等。 [9]提出了一部分键暴露攻击,并了解了n 0范围内的私钥D最重要的位(MSB)。 284 后来,Takayasu和Kunihiro [10]覆盖了N 0。 292 可以将部分钥匙曝光攻击应用于各种情况,包括模量N的Prime除数P或Q的泄漏,或其SUM P + Q等[11-13]。292仍然是最好的界限。但是,已经证明,在部分知识泄漏的放松状态下,可以改善界限。[8]中,Boneh,Durfee和Frankel引入了对RSA的部分关键暴露攻击的概念。它解决了攻击者获得私人指数d的一些位的情况。Ernst等。 [9]提出了一部分键暴露攻击,并了解了n 0范围内的私钥D最重要的位(MSB)。 284 后来,Takayasu和Kunihiro [10]覆盖了N 0。 292 可以将部分钥匙曝光攻击应用于各种情况,包括模量N的Prime除数P或Q的泄漏,或其SUM P + Q等[11-13]。Ernst等。[9]提出了一部分键暴露攻击,并了解了n 0范围内的私钥D最重要的位(MSB)。284 后来,Takayasu和Kunihiro [10]覆盖了N 0。 292 可以将部分钥匙曝光攻击应用于各种情况,包括模量N的Prime除数P或Q的泄漏,或其SUM P + Q等[11-13]。后来,Takayasu和Kunihiro [10]覆盖了N 0。292 可以将部分钥匙曝光攻击应用于各种情况,包括模量N的Prime除数P或Q的泄漏,或其SUM P + Q等[11-13]。可以将部分钥匙曝光攻击应用于各种情况,包括模量N的Prime除数P或Q的泄漏,或其SUM P + Q等[11-13]。
印度班加罗尔理工学院 M. Tech 系助理教授 2 摘要:硬件安全涉及各种操作,包括电子商务、银行、通信、卫星、图像处理等领域。密码学不过是将纯输入文本转换为密码输出或反之亦然的过程。密码学有三种形式:私钥密码学、公钥密码学和哈希函数。私钥只不过是使用类似的密钥进行加密和解密过程,而公钥只不过是使用两个不同的密钥进行加密和解密过程。由于 AES 使用类似的密钥进行加密和解密,因此这种类型的性能非常重要,易于应用,并且需要的处理能力真正较低。加密过程是保护特定信息或数据通信的唯一方法。根据密钥长度,它更有效,并且有三种密钥长度选项可用,它们是 128 位、192 位和 256 位关键长度。密钥长度越长,破解系统或入侵系统所需的时间就越长。AES 执行四种不同的功能或转换,它们如下:子字节、移位行和混合列与添加轮密钥。通过使用流水线架构和 LUT,可以实现更高的速度。所提出的架构是在优化时序的基础上形成的,这是通过使用 verilog HDL 实现的。关键词:AES(高级加密标准)、FPGA(现场可编程门阵列)、LUT(查找表)、混合(混合列)移位(移位行)、子(子字节)。
摘要 — 本研究提出了一种简单的加密解决方案,用于保护计算机应用中常用的灰度和彩色数字图像。由于这些图像用途广泛,保护它们对于防止未经授权的访问至关重要。本文的方法使用基本操作来处理图像的二进制矩阵。这些具体操作包括将 8 列矩阵扩展至 64 列,将其重新组织为 64 列,将其分成四个块,并使用秘密索引密钥对列进行混沌处理。这些密钥由四组常见的混沌逻辑参数生成。每组参数执行混沌逻辑映射模型以生成混沌密钥,然后将其转换为索引密钥。该索引密钥在加密过程中对列进行混沌处理,在解密过程中进行反向操作。该加密方法保证了密钥空间的安全性,从而能够抵御黑客攻击。由于解密过程对精确的私钥值敏感,因此加密图像是安全的。私钥通常是混沌逻辑参数,这使得加密具有弹性。该方法非常方便,因为它支持任意大小和类型的图像,而无需修改加密或解密技术。混洗取代了传统数据加密方法中复杂的逻辑过程,简化了加密过程。我们将使用多张照片进行实验,以评估所提出的策略。加密和解密后的照片将被检查,以确保该方法符合加密标准。速度测试还将把所提出的方法与现有的加密方法进行比较,以展示其通过缩短加密和解密时间来加速图片加密的潜力。
加密算法是转换数据的数学函数,通常使用变量或密钥来保护信息。保护这些关键变量对于受保护数据的持续安全至关重要。对于对称加密算法,加密保护信息的发送者和接收者使用相同的密钥。对称密钥必须保密以保持机密性;任何拥有密钥的人都可以恢复未受保护的数据。非对称算法要求发送者使用一个密钥,接收者使用另一个不同但相关的密钥。其中一个非对称密钥(私钥)必须保密,但另一个密钥(公钥)可以公开,而不会降低加密过程的安全性。这些非对称算法通常称为公钥算法。
在虚拟资产背景下的资产标记化,象征化是在区块链上创建现实世界资产的数字表示的过程。由此产生的令牌代表了可以在区块链上持有,出售和交易的基础资产中所有权的股份(例如财务证券,财产,艺术品)。这些令牌也可以称为资产支持的令牌。区块链与虚拟资产有关的安全数字分类帐或交易数据库,该虚拟资产是按时间顺序记录且能够被审核的。IT记录交易并跟踪分散网络中的资产。这意味着记录未存储在一个中心位置,而是在计算机网络中散布。记录是不可变的,因此无法删除或更改。在自己的区块链上运行的硬币虚拟资产。它们用于项目的交易,投资或筹款机制。硬币的例子包括比特币,莱特币,以太。冷钱包没有连接到互联网的钱包。私钥和虚拟资产存储在offl ine中。,例如,硬件钱包类似于USB驱动器或带屏幕和按钮的小型便携式设备,例如Ledger Nano X,Trezor Model T和KeepKey。共识分散网络中的参与者(节点)在数据的有效性上达成共识,并且分布式分类帐包含一致的集合和订购经过验证的交易。在区块链上的任何更新或交易都需要节点之间的协议。共识机制的例子包括工作证明,股份证明。托管服务在其中虚拟资产服务提供商(VASP)代表他们持有和管理客户的私钥和/或虚拟资产的服务。加密货币数字或虚拟货币使用加密货币来确保交易,投资或创建硬币来资助项目。他们是分散的,并在区块链技术上运作。