摘要我们报告了二氧化硅(SOS)晶状体上掺杂Erbium掺杂的平面波导的制造和表征,可提供低损耗和适用于用于工程光波导放大器(1530-1565 nm)的光纤维通信的较低的光限制。在这里,我们描述了一种超快的血浆掺杂(ULPD)技术,该技术是使用由飞秒激光(波长800 nm)诱导的血浆进行的,其重复速率为10 kHz,脉冲持续时间为45 fs。此处介绍的ULPD方法已成功应用于先前使用脉冲持续时间约为100 fs且重复速率为1 kHz的FS-LASER掺杂在SOS底物上的稀土材料。已经分析了厚度,折射率,光学传播损失,光致发光强度和光致发光寿命的厚度,折射率损失,光发光损失,光发光损失,光发光损失,光致发光的寿命。我们报告了C波段中<0.4dB/cm的低传播损失,长寿命为13.21 ms,在1532 nm和最大的寿命密度产物6.344 x10 19 s.cm -3。低损耗平面平板波导和高寿命密度的产品有望在SOS平台上制造带状的波导的进一步可能性。所提出的主动波导制造方法可能对制造平面的集成光学波导放大器和与基于硅的光子积分电路兼容的激光。
在本文中,我们讨论了3个示例,其中微透镜可以成为解决光纤阵列和光子积分电路(PIC)之间耦合挑战的有用工具。这项工作中使用的(阵列)通过光孔反射方法实现了(可以单层集成在PIC的背面,或者可以单独地集成在PIC的后侧,或者可以在PIC的设备侧安装。第一个示例涉及在感应图片的背面蚀刻的硅微透镜(在C波段中运行),目的是用于放松的对齐公差,并使设备侧没有接口纤维。第二个示例涉及实施4毫米长的工作距离扩展的梁(30 µm模式场直径,C型波段)界面,用于电信/数据量应用程序,该应用程序也极大地放松了PIC上的GRATINAL耦合器和A纤维阵列之间的横向和纵向对齐公差。最终示例涉及在这个长的工作距离扩展的梁界面中的隔离器的集成。隔离器堆栈由偏振器(0.55 mm厚),非重生法拉第旋转器(485 µm厚的薄膜闩锁Faraday旋转器)和半波板(HWP,91 µm石英)组成。我们获得了宽带操作,表现出非常低的(1至1.5 dB之间)的插入损失和良好的灭绝比(17至20 dB之间)C波段(约1550 nm)
引言研究和创新可以通过数字技术来提高循环且竞争激烈的欧洲制造业。数据互操作性和质量及其结构,真实性和完整性是剥削数据值的关键,尤其是在AI部署的背景下。量子计算,即使用量子力学现象来执行计算,这是一个可以为人和企业做出根本性变化的领域。R. P. Feynman [1]提出了使用量子力学进行计算的第一个建议之一。最流行的量子计算模型是基于量子位或量子的量子电路。光子积分电路(图片),也称为光学芯片,将多个(至少两个)光子函数整合到光学波长上的信息信号。选择光子学以接近量子计算有两个主要优点。首先是,据信随机噪声水平降低了几个数量级,即使是基于物质的方法的最小噪声。其次,为经典计算目的而努力追求图片,量子体系结构所需的核心组成部分已经在研究中。此外,照片已被证明不仅是CMOS兼容的,而且可以在CMOS制造技术和标准方面没有任何更改来构建它们[2,3]。在所有人中,硅光子学[4]由于其低光谱分散体和高折射率而容易整合复杂的光学系统。硅图片用于量子计算,可以通过线性光学量子电路和单个光子来实现。
开发量子计算机和远程量子网络的核心挑战在于在许多可控的量子位上的纠缠分布1。钻石中的颜色中心已成为领先的固态“人造原子” Qubits 2,3,实现了按需远程纠缠4,对超过10多个Ancillae Qubits的连贯控制,并具有长时间的连贯性时间5和内存增强的量子通信6。关键的下一步是将大量人造原子与光子体系结构相结合,以实现大规模量子信息处理系统。迄今为止,这些努力因量子不均匀性,低设备产量和复杂的设备要求所困扰。在这里,我们在光子积分电路(PIC)上引入了“量子微芯片”的高收益异质整合 - 含有高度相干色中心的钻石波导阵列。我们使用此过程来实现128个通道缺陷阵列的葡萄球菌和硅离面彩色中心。光致发光光谱显示出长期稳定且狭窄的平均光学线宽为54 MHz(146 MHz),用于锗胶囊(硅 - 胶囊)发射器,接近32 MHz(93 MHz)的终身限制线宽(93 MHz)。我们表明,可以通过在没有线宽降低的情况下进行超过50 GHz的整合调整,可以在原位补偿各个颜色中心光学转换的不均匀性。能够将大量几乎无法区分和可调的人造原子组装成相稳定的图片的能力标志着迈向多重量子repeaters 7,8和通用量子量子处理器9-12的关键步骤。
抽象的光子加载量滤波器是在光纤通信系统中实现波长多路复用(WDM)的关键组件。光子整合的最新进展表明,在芯片上将光子附加电源过滤器与高性能光子构建块一起集成的潜力,以构建WDM的紧凑型和复杂的光子积分电路。通常,实现基于具有集成加热器或基于自由载体分散调节器的微环谐振器,以调整滤波器波长。然而,加热器遭受高功耗,自由载体会导致光吸收损失,从而限制了向非常大尺度电路的可扩展性。我们演示了基于垂直移动的MEMS式环共振器的紧凑型加载滤器的设计,仿真,制造和实验表征。在IMEC的ISIPP50G硅光子平台中实现了MEMS驱动的加载滤波器,并使用短的后处理流程实现,以在晶圆级兼容的过程中安全释放悬挂的MEMS结构。滤波器在1557.1 nm处表现出约1 nm(124.37 GHz)的端口宽度,并保留了20 dB的端口灭绝,端口隔离率在驱动电压的27 V下> 50 dB。低功率消耗和紧凑的足迹的组合证明了在光子cirit中非常大规模整合的适用性。©作者。由SPIE在创意共享归因4.0国际许可下出版。[doi:10.1117/1.jom.2.4.044001]全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。
硅光子学在过去十年中已成为未来应用的有前途的解决方案,例如5G Fronthaul,工业自动化,自动驾驶汽车,数据中心,计算机记忆分解和超越[1]的高速光学互连。通过利用互补的金属 - 氧化物 - 塞体导体(CMOS)制造技术先前是为电子工业开发的,已经开发了各种高速主动的光学组件,例如调制器和光电遗传学器[2,3]。此外,在各种FAB中,已优化了被动光学组件(例如光栅耦合器[4]和波导[5])的生产方法。为了进一步增强从/到光子积分电路(PIC)的被动组件和活动组件之间的光学连接,互连波导的正确设计和形状起着至关重要的作用。随着新的光子构建块的引入,例如硅芯片上III – V光源的异质整合,需要连续改进。有三种通用方法可以在两个波导之间实现光耦合:对接耦合,方向耦合和绝热耦合。对接耦合方法是指直接连接的两个波导的模式曲线匹配。通过最大化模式字段重叠来优化其耦合效率。因此,对于异质整合,在彼此之间需要在不同的组件之间耦合光,对接耦合不是首选选项。此外,定向耦合器的带宽有限,因为节拍长度取决于波长。在定向耦合方法中,当输入波导处的模式耦合到耦合区域的超级模型的叠加时,光耦合在两个平行波导之间。该模式以半节拍的长度从一个波导到另一个波导完全耦合,而节拍长度可以设计为短[6]。但是,在实践中很难精确确定确切的节拍长度,从而使功率传输效率和设备性能不确定。在绝热耦合方法中,
关键字:从第一个实用的(商业)系统实现(SOC)实现到当前状态的基于INP的光子积分电路(PICS)的光子集成电路,光发射器,光子接收器,光子传感器,量子计算抽象进步的抽象进步。使用基于GAN的半导体扩展到光子IC到可见的和近脉冲光谱,有望在光学通信,传感和量子溶液中大量应用。ntroduction Modern Electronics始于晶体管的发明和少数载体注入的发现[1]。综合电路(IC)的发明以及半导体技术的可扩展性[2,3]急剧改变了我们的现代世界,因为晶体管和半导体技术的能力不断提高固态循环的功能,性能和可靠性,同时降低其大小,电力,电力,成本和成本。此缩放率是指数级的,如今导致了每芯片超过500亿晶体管的综合电路,每晶体管成本<0.1微米。集成电路的关键值是通过消除需要通过半导体批处理和晶圆刻度处理来提供设备和电路连接来实现这些改进的能力。半导体激光[4],半导体合金激光[5]以及化合物半导体合金[5]的相关可行性引发了将电子集成电路概念扩展到光子学的可能性。这是Miller [6]在《贝尔系统技术杂志》中首次提出的:本文概述了针对激光束电路微型形式的提案……光刻技术可能允许同时构建复杂的电路模式……如果实现……经济应产生。在该提案以来的过去50多年中,有许多有关图片的研究演示。但是,从综合组成部分中得出的经济价值通常不会超过整合本身的成本,这限制了图片的商业成功和发展。迄今为止,图片的介绍和缩放主要是由它们用于光学通信的使用
量子密钥分布(QKD)是一种创新技术,用于在空间分离的用户中安全地分发加密密钥[1,2]。它基于对单个量子状态的随机选择位,然后对这些位进行独立的测量。使用经典的后处理技术和经典的通信渠道,可以通过远程各方(通常称为Alice和Bob)来解密安全且共享的秘密密钥。许多实验表明QKD现在是一种成熟的技术[3-7]。QKD协议可以分为两个广泛的类别:离散变量(DV)和连续变量(CV)QKD [1,2]。在前者中,与单光子检测器一起使用了一组离散的量子状态[1,2],而在后者中,一组更广泛的状态与连贯的检测一起使用[8]。CV-QKD最近引起了很大的关注,因为它可以通过可以在室温下运行的常规电信组件来实现,从而实现了与当前网络基础架构兼容的具有成本效益的实施。特别是,CV-QKD可以在大都市网络中提供更高的秘密关键率[1,2]。此外,与DV-QKD相比,CV-QKD可以通过使用光子积分电路(PICS)进行批量生产,因为相干接收器可以以更轻松的方式集成[9]。在安全性方面,CV-QKD已被证明是可靠的,可以针对一般的集体攻击[10-12]。最后,在[21,22]中还研究了CV-QKD和经典信号的共存和经典信号。为了避免由于局部振荡器(LO)和检测器引起的安全漏洞,可以考虑使用TRUE LO [13,14]和测量设备独立的(MDI)[15,16]方案。在实验中,最近实现了CV-QKD的高速传输距离,高达202.81 km [17],高速高达63.7 MB S-1 [18]和高安全性MDI量子密码[15,19,20]。多核纤维(MCF)将出于多种原因在未来的古典沟通中发挥基本作用。首先,MCF可以解决即将到来的网络容量短缺[23]。理论上,可实现的
摘要 - 光子芯片正在变得越来越可编程,并使用电子和软件重新配置了连接性。这种进化是由人工智能和量子计算应用所推动的。我们将讨论可以在更多样化的应用中部署的更多通用目的电路,类似于通用可编程电子产品。光子是世界上最喜欢的数据载体,形式是光学链接。,但越来越多的我们看到,光子信息是在芯片表面上处理的,而不仅仅是用于数据传输,还用于处理。虽然光子集成电路(PIC)大多限于非常特定的功能(例如收发器)该技术正在缓慢地发现其进入不同的应用空间。这是通过多种材料系统(例如IIII-V半导体,硅或氮化硅)中快速成熟的PIC技术平台支持的。用类似的半导体技术与电子芯片制造,这些PIC平台在芯片上支持100s或1000秒的光学构建块的密集整合。当这些构建块包含电气可调节元件时,可以主动操纵芯片的行为。结果,静态光子积分电路逐渐变得更加可调,在运行时可以调整性能或功能。当然,这需要将光子电路与电子驱动器电路集成。在过去的5年中,光子芯片上可调元素的广泛可用性导致了所谓的“可编程”光子电路。在可编程的图片中,光的路径没有预先确定。相反,该电路由连接的波导网的网格与2×2的光学门组成,由2×2耦合器组成(芯片上等效于2×2光学梁的芯片)和相位变速器(或相位变速器(或等效的光学子电路))。此类波导网格在图中绘制1。通过调整门的耦合系数,可以将光线分布在芯片上的不同波导路径上,并且随着相位变速,可以控制这些不同路径之间的干扰。结果是可以在运行时由用户控制的大量多路干涉仪。我们可以识别两个主要类别可编程的Wave-Uide网格,如图1 [1]。在仅向前的距离隔离光线,从一组输入端口到一组输出端口的一个方向传播。光学门控制
基于自我成像效应[1],多模式干涉仪(MMI)可以用作光束拆分器,这是光子积分电路的基本构建块。MMI与Y分支和方向耦合器相比,由于其定义明确的振幅,相位和出色的公差[2,3],提供了卓越的性能。因此,MMI在Mach-Zehnder干涉仪(MZIS)[4],分裂和组合器[5,6],极化束分裂器[7]中找到应用。与MMIS尺寸降低或性能提高有关的研究已发表[8-11]。最近,在SOI上使用MMI设备的次波光栅在内的设计表现出了巨大的承诺[12,13]。次波长光栅(SWGS)是光栅结构,它利用小于波长的光向音高[14],抑制衍射效应并表现出各向异性特征[12]。通过工程化各向异性折射率,SWG已在许多应用中使用,例如纤维芯片表面和边缘耦合器[15-17],微功能波导[18],镜片[19],波导cross [20],多路复用器[17,21,22],相位移动器[23]和Optical Shifters [23]和Optical Sheifters [23] [23] [24] [24] [24] [24]。使用这种元物质,SWG MMI设备的带宽已在SOI平台上显着扩展[12,13],这使包括波长二线二线器[25],宽带偏振器梁拆分器[26] [26]和双模式束分配器有益于广泛的应用[27]。砖SWG结构以减轻制造分辨率的要求[28,29]。在SOI平台旁边,其他CMOS兼容材料,例如氮化硅,氮化铝和硝酸锂引起了很多关注。氮化硅(Si 3 N 4)由于其超低损失[30],非线性特征[31],从400 nm到中红外[32]脱颖而出[31]。像SOI平台一样,人们对在硅硅平台内实现高性能MMI设备也非常感兴趣。在本文中,我们将SWG MMI理论从SOI平台扩展到其他集成的光子平台,专门针对300 nm厚的氮化硅平台。我们的目标是设计和优化具有较小脚印和宽操作的SWG MMI设备