开发量子计算机和远程量子网络的核心挑战在于在许多可控的量子位上的纠缠分布1。钻石中的颜色中心已成为领先的固态“人造原子” Qubits 2,3,实现了按需远程纠缠4,对超过10多个Ancillae Qubits的连贯控制,并具有长时间的连贯性时间5和内存增强的量子通信6。关键的下一步是将大量人造原子与光子体系结构相结合,以实现大规模量子信息处理系统。迄今为止,这些努力因量子不均匀性,低设备产量和复杂的设备要求所困扰。在这里,我们在光子积分电路(PIC)上引入了“量子微芯片”的高收益异质整合 - 含有高度相干色中心的钻石波导阵列。我们使用此过程来实现128个通道缺陷阵列的葡萄球菌和硅离面彩色中心。光致发光光谱显示出长期稳定且狭窄的平均光学线宽为54 MHz(146 MHz),用于锗胶囊(硅 - 胶囊)发射器,接近32 MHz(93 MHz)的终身限制线宽(93 MHz)。我们表明,可以通过在没有线宽降低的情况下进行超过50 GHz的整合调整,可以在原位补偿各个颜色中心光学转换的不均匀性。能够将大量几乎无法区分和可调的人造原子组装成相稳定的图片的能力标志着迈向多重量子repeaters 7,8和通用量子量子处理器9-12的关键步骤。
主要关键词