摘要:在这个全球化和数字化的时代,工业正在从物理空间信息流向虚拟和物理空间之间的双向通信发展。本研究旨在解决的挑战是:“虚拟系统如何适应影响工业维护运营动态的物理信息空间不断变化的条件?”。本文介绍了一种增强现实 (AR) 辅助数字孪生 (DT) 解决方案,可用于校准维护环境中的移动机器人。该 DT 解决方案通过使用历史数据作为输入为用户提供预测移动机器人电池电量的能力,并使用 AR 设备作为显示此数字数据的媒介为用户提供移动机器人运动的视觉表示,从而实现该解决方案。总体而言,试验演示成功实施了使用 AR 辅助校准移动机器人的 DT。因此,该 DT 解决方案可以应用于工业环境的细分领域。通过预测电池电量,用户可以知道移动机器人何时电量耗尽,从而可以在召回充电之前最大限度地利用它。这将提高移动机器人部署调度的准确性,最大限度地提高机器人的利用率,并长期降低移动机器人的运行成本。
摘要:近年来,碳纳米管(CNT)已作为材料出现,这些材料经常用于制备具有导电或高级介电特性的聚合物纳米复合材料,因为它们的独特特性(包括高温和电导率),包括高度和稳健的材料,具有很高的长度至直径比例。但是,在使用这些材料的聚合物纳米复合材料制备过程中,遇到了一些问题。主要问题之一是,在准备这些导电材料或将它们添加到聚合物中后,由于它们的导电结构,它们倾向于聚集,形成团聚。因此,在这项研究中,首先,多壁碳纳米管(MWCNT)用多苯胺(PANI)的导电形式(随后,聚(Dimethyl Siloxane)(PDMS)聚合物聚合物纳米复合膜功能化,具有不同浓度的多型多壁碳Nanotubes的浓度。然后,表征了膜的结构,形态,电和介电特性。仅添加了1.5%的PANI-CNT,在1 Hz时,PDMS的介电常数增加了47倍。此处介绍的介电膜可用于电容器,柔性电子,介电弹性体和人造肌肉应用。关键字:碳纳米管(CNTS),导电聚合物,介电,聚苯胺(PANI),聚合物纳米复合材料,聚(二甲基Siloxane)(PDMS)
摘要 —本文讨论了一种基于射频识别 (RFID) 的移动机器人定位方法,该方法采用分布在空间中的 RFID 标签。现有的用于移动机器人定位的独立 RFID 系统受到许多不确定性的阻碍。因此,我们提出了一种新算法,通过将 RFID 系统与超声波传感器系统融合来改善定位。所提出的系统通过使用从超声波传感器获得的距离数据部分消除了 RFID 系统的不确定性。我们定义了使用 RFID 系统的全局位置估计 (GPE) 过程和使用超声波传感器的局部环境认知 (LEC) 过程。然后,提出了一种分层定位算法,使用 GPE 和 LEC 来估计移动机器人的位置。最后,通过实验证明了所提算法的实用性。
摘要 —本文讨论了一种基于射频识别 (RFID) 的移动机器人定位方法,该方法采用分布在空间中的 RFID 标签。现有的用于移动机器人定位的独立 RFID 系统受到许多不确定性的阻碍。因此,我们提出了一种新算法,通过将 RFID 系统与超声波传感器系统融合来改善定位。所提出的系统通过使用从超声波传感器获得的距离数据部分消除了 RFID 系统的不确定性。我们定义了使用 RFID 系统的全局位置估计 (GPE) 过程和使用超声波传感器的局部环境认知 (LEC) 过程。然后,提出了一种分层定位算法,使用 GPE 和 LEC 来估计移动机器人的位置。最后,通过实验证明了所提算法的实用性。
塞来昔布。在7周龄时,除了接受盐水治疗的动物外,所有动物都接受了S.C.每周一次注射AOM(15 mg/kg体重)2周。然后将大鼠维持在对照或实验饮食中,直到实验终止。体重在最初的8周内每周记录每周一次,然后每4周记录体重。每天监测动物的一般健康。该实验在第二次AOM治疗后50周终止,此时所有动物均被二氧化碳安乐死杀死。剖腹手术后,整个胃和肠道被切除并纵向打开,并用正常的盐水冲洗含量。使用解剖显微镜,大小的肠道肿瘤的位置,数量和大小严重地注意到了。用卡尺测量每个肿瘤的长度,宽度和深度。肿瘤体积(31)。其中v为音量。l是长度。w是宽度,d是
产生对社会科学(组织理论,经济学,认知心理学)和生命科学(Theo-Wentical Biology,Animal Senology)的基本问题的见解。对多机器人系统的研究自然扩展了对单机器人系统的研究,但也是一项纪律:多机器人系统可以完成没有任何一个机器人可以完成的任务,因为最终的机器人最终,无论有多么能力,在空间上都受到限制。多机器人系统也与其他分离的系统不同,因为它们具有隐式的“现实世界”环境,这比分布式系统环境的传统组件(即计算机,数据库,网络,网络,网络,网络,网络)更困难地模型和理由。术语集体行为通常表示具有多个代理的系统中代理的任何行为。合作行为,是
John C. Dodd博士是国际生物技术学院(wwwbio.ukc.ac.uk/iibmircen)的生物技术MIRCEN主任,基于肯特大学(UKC)的肯特大学(UKC),UKC),UKC和Biosciences的荣誉高级研究员。他还是欧洲银行(BEG)的共同指导者,该银行经营着在线生态数据库和遗传档案(wwwbio.ukc.ac.uk/beg),用于arbuscular mycorrhizal Fungi。他已经广泛发表过关于菌根真菌的广泛发表,其中包括各种温带和热带生态系统以及植物病理学和农艺学的应用和基础研究。他的总体目标是研究如何在植物生产中进行这些好处,例如农业系统,降级地点的重新造林或生态恢复。这个目标符合利用微生物的自然生物多样性来实现生物技术过程,作为遗传操纵的替代选择。最近,他促进了在英国的菌根真菌的应用,帮助一家公司(Plantworks,Plantwksuk@aol.com)为市场生产“调谐”产品。