1。Dibyendu Chakravarty,S。Roy,P.K。das,“氧化铝和氧化锆的DC电阻率与抽动烧结”,《材料科学公报》。28 [3],227-231,2005。2。312,252-257,2007。3。dibyendu Chakravarty,Prakash Singh,Sindhu Singh,Devendra Kumar,Om Parkash,“高介电常数常数钙钛矿氧化物的电导行为LA X Ca 1-3x/2 Cu 3 Ti 4 O 12”,Alloys and Alloys and Compiounds。438,253-257,2007。4。D.Roy,D.Chakravarty,R.Mitra,i.manna,“烧结对纳米 - tio 2的微结构和机械性能的影响,分散Al 65 Cu 20 Ti 15无定形/纳米晶基质复合材料”,合金和化合物杂志和化合物。460,320-325,2008。5。dibyendu chakravarty,S。Bysakh,K.Muraleedharan,Tata N Rao,R。Sundaresan,“具有高硬度和骨折韧性的镁含量氧化铝的火花等离子体烧结”,《美国陶瓷学会》。91 [1],203-208,2008 6。Dibyendu Chakravarty,H.Ramesh,Tata N.Rao,“ Spark等离子体烧结的高强度多孔氧化铝”,《欧洲陶瓷学会杂志》。29,1361-1369,2009。7。R.Mazumder,D.Chakravarty,D.Bhattyacharya,A.Sen,“ Bifeo 3的Spark等离子体烧结”,材料研究公告。44,555-559,2009。8。93 [4],951-953,2010。9。Dibyendu Chakravarty,G。Sundararajan,“应用压力对Spark等离子体插入氧化铝的传播的影响”,《美国陶瓷学会杂志》。A.Mukhopadhyay,Dibyendu Chakravarty,B.Basu,“火花等离子体烧结的WC -Zro 2 -Co多相纳米复合材料具有高断裂韧性和强度”,《美国陶瓷社会杂志》。93 [6],1754-1763,2010 10。K.rajeswari,U.S.Hareesh,Dibyendu Chakravarty,R.Subasri,Roy Johnson,“对SPS,MW和TTS的比较评估,对稳定化Zro 2陶瓷的密度和微观结构评估的比较评估”,《 Sintering的科学》。42,259-67,2010 11.Amit S Sharma,K.Biswas,B.Basu,Dibyendu Chakravarty,“纳米晶体Cu和Cu-10 wt%PB的Spark等离子体烧结,”冶金和材料交易A.42 [7],2072-84,2011 12.Dibyendu Chakravarty,B。V. Sarada,S.B。 Chandrasekhar,K.Saravanan,T.N.Rao,“制造多孔硅的新方法”,材料科学与工程A. 528(25-26),7831-34,2011。Dibyendu Chakravarty,B。V. Sarada,S.B。Chandrasekhar,K.Saravanan,T.N.Rao,“制造多孔硅的新方法”,材料科学与工程A.528(25-26),7831-34,2011。
5.2.2.1. 概述和 PFAS 去除机制 40 5.2.2.2. 适用于处理方案 41 5.2.2.3. 不同 PFAS 的处理效果与处理目标 41 5.2.2.4. 适用于土壤特性和共同污染 42 5.2.2.5. 操作考虑因素 42 5.2.2.6. 成本和商业考虑因素 43 5.2.2.7. 能源和化学品使用及可持续性考虑因素 43 5.2.2.8. 案例研究 43 5.2.2.9. 知识差距 43 5.2.3. 热解吸 43 5.2.3.1. 概述和 PFAS 去除机制 43 5.2.3.2. 适用于处理方案 45 5.2.3.3.不同 PFAS 的处理效果与处理目标 45 5.2.3.4. 对土壤特性和共同污染的适用性 47 5.2.3.5. 操作考虑因素 48 5.2.3.6. 成本和商业考虑因素 48 5.2.3.7. 能源和化学品使用及可持续性考虑因素 48 5.2.3.8. 案例研究 49 5.2.3.9. 知识差距 49 5.2.4. 阴燃 49 5.2.4.1. 一般描述和 PFAS 去除机制 49 5.2.4.2. 对处理方案的适用性 51 5.2.4.3. 不同 PFAS 的处理效果与处理目标 51 5.2.4.4. 对土壤特性和共同污染的适用性 52 5.2.4.5.操作考虑因素 52 5.2.4.6. 成本和商业考虑因素 52 5.2.4.7. 能源和化学品使用及可持续性考虑因素 53 5.2.4.8. 案例研究 53 5.2.4.9. 知识差距 53 5.3. 非破坏性方法 54 5.3.1. 异位土壤冲洗 54 5.3.1.1. 一般描述和 PFAS 去除机制 54 5.3.1.2. 适合处理方案 56 5.3.1.3. 不同 PFAS 的处理效果与处理目标 57 5.3.1.4. 对土壤特性和共同污染的适用性 58 5.3.1.5. 操作考虑因素 59 5.3.1.6.成本和商业考虑因素 59 5.3.1.7. 能源和化学品使用及可持续性考虑因素 60 5.3.1.8. 案例研究 61 5.3.1.9. 知识差距 61 5.3.2. 稳定化和固化 (S/S) 61 5.3.2.1. 一般描述和 PFAS 去除机制 61 5.3.2.2. 适合处理方案 65 5.3.2.3. 不同 PFAS 的处理效果与处理目标 66 5.3.2.4. 对土壤特性和共同污染的适用性 70 5.3.2.5. 操作考虑因素 71 5.3.2.6. 成本和商业考虑因素 72 5.3.2.7. 能源和化学品使用及可持续性考虑因素 73 5.3.2.8.案例研究 73 5.3.2.9. 知识差距 73 5.4. 途径管理方法 74 5.4.1. 填埋 74 5.4.1.1. 一般描述和 PFAS 去除机制 74 5.4.1.2. 处理方案的适用性 75 5.4.1.3. PFAS 废物阈值 76 5.4.1.4. PFAS 废物填埋场的可用性 76
29] 及其中的参考文献)。在演化过程中,薄膜/蒸汽界面可能会发生复杂的拓扑变化,如夹断、分裂和增厚,这些变化都给该界面演化的模拟带来了很大困难。[1] 提出了一种相场模型,该模型可以自然地捕捉形态演化过程中发生的拓扑变化,并且可以轻松扩展到高维空间,其中采用了稳定化方案的谱方法。相场方法的思想可以追溯到 [22] 和 [30] 的开创性工作。从那时起,它已成功应用于许多科学和工程领域。相场法使用辅助变量 φ(相场函数)来局部化相并用一层小厚度来描述界面。相场函数在两个相中分别取两个不同的值(例如 +1 和 −1),并在整个界面上平滑变化。在相场模型中,界面被视为过渡层,界面上某些物理量会连续但急剧地发生变化。相场模型可以从变分原理自然推导出来,即通过最小化整个系统的自由能。结果,导出的系统满足能量耗散定律,证明了其热力学一致性,并得到了一个数学上适定的模型。此外,能量定律的存在为设计能量稳定的数值方案提供了指导。相场方法现在已成为研究界面现象的主要建模和计算工具之一(参见[8–13,20,25,26]及其参考文献)。从数值角度来看,对于相场模型,数值近似中的一个主要挑战是如何设计无条件的能量稳定方案,使半离散和全离散形式下的能量都保持耗散。能量耗散定律的保持尤为重要,对于排除非物理数值解至关重要。事实上,已经观察到不遵守能量耗散定律的数值格式可能导致较大的数值误差,特别是对于长时间模拟,因此特别需要设计在离散级别保持能量耗散定律的数值格式。开发用于近似相场模型的数值格式的另一个重点是构建高阶时间推进格式。在一定精度的要求下,当我们想要使用更大的时间推进步骤来实现长时间模拟时,高阶时间推进格式通常比低阶时间推进格式更可取。这一事实促使我们开发更精确的格式。此外,不言而喻,线性数值格式比非线性数值格式更有效,因为非线性格式的求解成本很高。在本文中,我们研究了基于 SAV 方法的线性一阶和二阶时间精确、唯一可解且无条件能量稳定的数值格式,用于解决固态脱湿问题相场模型,该 SAV 方法适用于一大类梯度流 [15, 16]。引入辅助变量的梯度流格式首次在 [23,24] 中提出,称为不变能量二次化 (IEQ) 方法,其中辅助变量是一个函数。SAV 方法的基本思想是将梯度流的总自由能 E (φ) 分为两部分,写为