GF管道系统是瑞士高性能流量解决方案和DCW London 2025年的金牌赞助商,将在DC142介绍其尖端的直接液体冷却(DLC)的尖端解决方案。与会者可以从3月12日至13日在伦敦数据中心世界伦敦数据中心访问GF管道系统,以探索旨在提高关键任务冷却基础设施的效率,可靠性和寿命的全面聚合物投资组合。GF管道系统的专家也将参加会议计划。随着人工智能和高性能应用所需的计算能力飙升,传统的空气冷却方法正在接近其限制。利用水比空气有效地传输高达1,000倍的能力,GF管道系统的直接液体冷却解决方案可以利用高性能热塑性塑料来提供提高的冷却效率,降低的重量和卓越的可靠性,同时消除了与金属系统相关的腐蚀风险。“数据中心必须发展以满足不断提高的性能和能源效率的需求,” GF管道系统全球市场发展数据中心马克·布尔默(Mark Bulmer)说。“我们的创新聚合物解决方案(使用高性能ProGEF和Sygef产品线)具有工程性的腐蚀和金属,可安全提供干净的冷却液。通过集成高级红外融合技术和焊缝检查,我们提供了一个系统,不仅安全可靠,而且可以快速安装,并且更易于维护。”访问者将使用IR-63 m的展位获得动手体验,这是一种红外融合机,可促进安全且无泄漏的管道连接其无接触熔化过程可确保与最小焊珠的清洁连接,从而提高最佳流动性能。机器控制的焊接过程可确保每个关节的重复性和完全可追溯性。除了其直接的液体冷却产品外,GF管道系统还支持传统的流体应用,例如冷水水,冷凝水,蒸发水或热量恢复,其Ecofit(PE100)(PE100)和凉爽融合(预隔离的PE)溶液(提供了多种降温项目的完整套件,可用于多样化的项目需求。2025年3月12日至13日在伦敦DCW伦敦DC142与GF管道系统的专家会面,并了解有关创新聚合物的管道解决方案的更多信息,以进行有效的冷却。从我们全球数据中心负责人查尔斯·弗雷达(Charles Freda)了解更多信息,他将在下午2:30参加有关直接液体冷却的未来的小组讨论。 3月12日。马克·布尔默(Mark Bulmer)将在3月13日上午10:05介绍聚合物管道系统的优势。
电动汽车是蓬勃发展的技术。性能和可靠性取决于电池的可持续性和适应性。电动汽车需要最佳的温度(既不温暖也不冷)才能有效运行。最佳温度对于电池组,电动电子系统和电动汽车中电动机的适当工作至关重要。保持在最佳温度时,保留电池电量,健康和容量。电力电子系统和电动机在最佳温度下展示了它们最佳的工作形象。如果不进行热管理,温度将升高,并且会导致电池快速衰老,并且有可能发生某些火灾危害。低温导致电池容量和能量密度的降解。因此,我们正在通过主动浸入冷却为电池开发热管理系统。主动空气冷却从空调中获取空气摄入量,其中包括蒸发器和加热器以控制空气的温度。主动冷却系统通常比被动冷却系统更好。我们将采用主动脱水冷却,其中硬件将沉浸在具有高导热率的介电中。对于任何电池,都会有电池管理系统。bms是一种电子系统,通过保护电池免受安全操作区域的操作,监视其状态,计算辅助数据,报告数据,控制其环境并平衡它来管理可充电电池的电池。IOT启用BMS是一项新型技术,它将监视和控制所有设备,包括在一个地方具有多个协议的传感器和网关。 该平台还为大型设备网络提供了远程配置功能和组管理功能。 使用IoT启用BMS的主要优点之一是,它在估计SOC和SOH等电池参数时的准确性。 IoT是一个相互关联的计算设备,机械和数字机器,对象的系统,它们提供了唯一的标识符(UID),并且能够通过网络传输数据而不需要人类对人类或人为计算机的交互。 物联网,是指连接设备的集体网络以及促进设备与云之间以及设备本身之间通信的技术。 物联网在智能家居中的应用:IoT允许您连接所有家庭应用,例如空调,照明,锁,恒温器,盗窃警报系统,以及何种系统,并用智能手机在指尖上控制控制。 因此,IoT启用BMS将来具有范围。IOT启用BMS是一项新型技术,它将监视和控制所有设备,包括在一个地方具有多个协议的传感器和网关。该平台还为大型设备网络提供了远程配置功能和组管理功能。使用IoT启用BMS的主要优点之一是,它在估计SOC和SOH等电池参数时的准确性。IoT是一个相互关联的计算设备,机械和数字机器,对象的系统,它们提供了唯一的标识符(UID),并且能够通过网络传输数据而不需要人类对人类或人为计算机的交互。物联网,是指连接设备的集体网络以及促进设备与云之间以及设备本身之间通信的技术。物联网在智能家居中的应用:IoT允许您连接所有家庭应用,例如空调,照明,锁,恒温器,盗窃警报系统,以及何种系统,并用智能手机在指尖上控制控制。因此,IoT启用BMS将来具有范围。
绝热与等温CAES 在讨论绝热CAES(例如 Storelectric 所提出的CAES)时,人们经常将其与等温CAES(例如 Lightsail、SustainX 和 General Compression 所提出的CAES)混淆。事实上,这两者有着根本的不同。CAES 压缩空气储能 (CAES) 使用多余或廉价的能源(例如来自电网或可再生能源发电)将空气压缩至高压 – 通常为 70bar。当再次需要能源时,空气被释放来为涡轮机提供动力(或辅助动力),从而再生电能。由于压缩空气的能量密度不高,需要大量的压缩空气,因此使用地质储存;现有的CAES 使用盐穴,这是目前用于大量储存天然气和其他碳氢化合物、危险废物等的众所周知的技术。尽管欧洲近 1/3 的天然气储量都存储在盐穴中,但从未发生过此类盐穴坍塌的情况。盐穴是人工建造的,盐盆地遍布世界各地。传统压缩空气储能系统将空气压缩到 70bar 时,温度会升高到 ~650 o C。但空气不能储存在高于 ~42 o C 的盐穴中,否则盐穴会恶化。因此,传统压缩空气储能系统会将压缩热浪费在冷却塔中。然而,在大致环境温度下从 70bar 膨胀会将空气冷却到 ~-150 o C。这不仅会冻结环境,还会冻结设备,从而毁坏设备,因此需要将热量重新放回去。传统压缩空气储能系统通过燃烧气体来释放膨胀热。Huntorf 和 McIntosh 使用的方法是将压缩空气送入燃气轮机,从而使燃气轮机更节省燃料。但它燃烧的天然气仍是同等规模发电站的 50-60%(McIntosh 为 60-70%),其往返效率(所有能量输出:输入)最多为 50%(Huntorf 为 42%),尽管更现代的设备渴望达到 ~54%。因为膨胀是通过经过特殊改装的涡轮机进行的,所以传统的 CAES 只有固定尺寸的。等温 CAES 等温 CAES(Lightsail、SustainX、General Compression)意识到压缩空气的最有效方式是在恒定的低温下。因此,他们发明了新型压缩机,可在 ~40 o C 时提取热量。然而,这只考虑了半个周期:提取的热量无法在系统内使用,因此被浪费了。这留下了与传统 CAES 相同的膨胀问题,他们声称通过从环境中吸收热量来解决这个问题:温度足够低,(例如)热泵或工业废热可以提供它。但所需的热量之多,将使任何此类清除工作都难以完成,除非是在非常特殊的地点,例如使用冶炼厂的废热。而且,新型膨胀机还不够完善;而新型压缩机也无法最大限度地提高效率、成本效益或可靠性。绝热 CAES 绝热 CAES 在整个压缩和膨胀循环中平衡热量,储存压缩热量以便在膨胀期间重复使用。RWE 已停用的 Adele 提案 https://www.youtube.com/watch?v=K4yJx5yTzO4(2'39” 视频)中展示了其原理,该提案建议将压缩热量储存在布满毛细管的陶瓷存储器中,以通过陶瓷扩散热量。砖块是陶瓷的。这实际上是两个夜间储热加热器,每个加热器都有一座塔楼那么大,它会膨胀和收缩,摩擦成灰尘(从而堵塞任何可以进入的通道)并压碎毛细管,导致非常高的维护成本和频繁的长时间停电以重建存储器。建造和隔热这样的容器成本高昂。 Storelectric www.storelectric.com 开发了其专有的绝热技术,该技术效率高(40MW 时效率约为 62%,500MW 时效率可提高至约 67%),可利用现有技术建造,经济高效,并已获得 Costain、Fortum、西门子和 Mott MacDonald 等众多跨国工程公司的认可。由于它使用“现成的”压缩机和膨胀机,因此非常可靠,几乎可以建造任何配备此类压缩机和膨胀机的规模。
