vsharma@grummanbutkus.com _________________________________________________________________________________________ 摘要 在寻求可再生能源解决方案的过程中,太阳能光伏系统已成为清洁电力生产的关键参与者。然而,高工作温度对其效率和寿命构成了重大挑战,特别是在聚光光伏 (CPV) 系统中。本文回顾并评估了各种冷却策略,从自然空气冷却到相变材料、液体浸没和喷射冲击等先进技术,以保持太阳能电池的最佳工作温度。我们的研究评估了这些冷却方法对 PV 系统性能、成本和环境影响的影响。我们发现微通道冷却显著提高了热性能,从而显著提高了 CPV 效率。通过统计分析、模拟数据和成本、可扩展性等务实考虑,我们验证了微通道散热器是提高 CPV 电池寿命和性能的强大解决方案。我们的研究结果主张将微通道技术集成到 CPV 系统中,这标志着向更可行和更强大的太阳能来源迈出了重大一步。关键词:太阳能光伏、光伏冷却、热管理、聚光光伏系统、微通道散热器、冷却技术、相变材料、液浸冷却、射流冲击、效率、可再生能源、热导率、电绝缘、纳米流体、环境可持续性、散热 ________________________________________________________________________________________________
与传统的空气冷却相比,矿物油效率的提高可能简化设施设计,并提供一种节省成本的方法。尽管矿物油浸没式冷却技术提高了冷却效率并节省了成本,但它仍未得到广泛应用,原始设备制造商不愿危及现有空气冷却系统设备的销售。仅有关于直接浸没式冷却热性能的令人信服的物理特性对于数据中心运营商来说是不够的。关于矿物油浸没式冷却对信息技术 (IT) 设备在组件和底盘级别可靠性的影响,仍存在许多不确定性和担忧。本文首次尝试通过回顾 IT 设备材料(如聚氯乙烯 (PVC)、印刷电路板 (PCB) 和电容器)的物理和化学性质的变化来应对这一挑战,并描述材料的互连可靠性。矿物油性质的变化(如运动粘度和介电强度)也被视为重要因素,并进行了简要讨论。本文展示了热塑性材料的弹性、硬度、膨胀和蠕变等机械性能的变化。还讨论了材料和矿物油之间的化学反应随时间和温度的变化。作者收集的有关该主题的文献和可量化数据为本研究文件提供了主要基础。[DOI:10.1115/1.4042979]
技术中性探索生成人工智能 ↔ 作者:Samuel Tan l samueltan@kenanga.com.my 在我们最近的知识共享会议“探索生成人工智能 (AI)”中,专家演讲者 Benedict Khoo 先生 (Supermicro)、Ko Yun Hung 先生 (SNS Network) 和 Lim Kah Chun 先生 (AIMS Data Centre) 深入探讨了这项最新的尖端技术及其为本地参与者带来的机遇。Supermicro 展示了其通过 GPU 服务器系统为推动 AI/HPC 进步所做的重大贡献。该公司对模块化和内部制造的战略重点确保了灵活性、成本效益和高质量的服务器解决方案,使其成为首选的服务器。SNS Network 强调了 AI 在马来西亚各个领域的变革潜力。该公司充当连接服务器制造商和买家的桥梁,推动 AI 在马来西亚的采用和集成。AIMS Data Centre 提供了有关数据中心在支持 AI 和 GPU 服务器方面的关键作用的宝贵见解。 AIMS 的 Tier 3 认证确保了高可用性和可靠性,具有冗余系统和容错组件。该公司还介绍了其空气冷却配置和创新的液体冷却解决方案,这使其成为马来西亚首选的数据中心提供商。
Dell PowerEdge R670是一台1U,双插座服务器,旨在具有最佳功率效率和平衡性能的高性能计算,以提高数据中心的生产率。它可以平衡高级计算能力与创新的设计效率最大化机架利用率并最大程度地减少能源消耗。非常适合高密度部署,虚拟化,全闪存SD,在线交易处理和云本地应用程序。PowerEdge R670针对企业和可扩展基础架构的专门构建,提供标准化,可轻松整合到现有环境中,配备了两个Intel®Xeon®6带有电子磁盘的处理器,它的每瓦性能高达1.69倍,比以前的型号提高了1.69倍,提高了功率效率,提高了功率效率和增加机架的型号。GPU支持的添加进一步扩大了计算能力,从而确保了较低能源使用的高性能。这些服务器可在后部I/O热过道和前I/O冷通道配置中使用。前I/O寒冷过道可提高可服务性,减少维护时间,并提高效率,可靠性和正常运行时间,并通过优化冷却和能源使用来支持您的可持续性目标。它还具有戴尔的智能和冷却技术,可用于空气冷却以大大减少能源消耗,从而有助于长期运营节省。
摘要。现代汽车行业中的锂离子电池技术利用了高度敏感的电池。在这里,基于温度控制策略,空气冷却策略最适用于所选示例。模拟已用于评估不同的热管理策略。使用计算流体动力学(CFD)模拟技术提供的解决方案开发了电池模型。它利用电池电池排放产生的热量。由于模拟的计算能力有限,能量传输模型是通过简化但足够复杂的物理网格实现的。在实验室中进行了十项实际测量,以调查在18650型电池充电和排放期间细胞的加热。将结果应用于验证模拟模型。比较了模拟结果和热摄像机读数。然后扩展细胞级数值模型,以检查系统级别的温度变化。主要的设计目标是达到可能的最高能量密度,这需要使细胞尽可能接近构建。但是,增加细胞之间的距离可以从热管理的角度提供优质的冷却。分析了各个细胞之间的距离对系统加热的影响。更大的距离导致更有效的传热。还发现,在某些情况下,与邻近构造相比,细胞之间的距离很小。基于这些模拟建立了临界距离范围,从而促进了细胞的位置。
在电池热管理系统 (BTMS) 的设计和分析中,瞬态效应通常被排除在外。然而,电动汽车承受着巨大的动态载荷,导致电池瞬态发热,而这种现象在稳定状态下是不会出现的。为了评估这种影响的重要性,本文基于在稳定条件下运行良好的现有冷却系统,对电池冷却过程进行了时间相关分析。为了模拟现实情况,从不同的标准驾驶循环中推断出电池电量消耗的时间变化。然后利用计算流体动力学预测 900 秒内电池模块内的冷却液和电池温度。结果表明,对于空气冷却,电池温度可能会超过安全限值。例如,在高性能驾驶循环中,200 秒后,电池温度就会超过临界值 308 K。尽管如此,当使用液体冷却电池模块时,温度始终在安全范围内。此外,在流速为 1.230 g/s 的高性能循环中,电池温度降至临界阈值以下,达到 304 K。此外,为了在 NYCC 交通和 US06 驾驶循环期间将电池温度保持在临界阈值以下,需要最大冷却液压力入口为 1.52 和 0.848 g/s,分别相当于 100 Pa 和 50 Pa。还讨论了在驾驶循环期间车辆加速引起的电池模块上努塞尔特数分布的时间变化。结论是,稳定状态的假设可能会导致 BTMS 的设计不理想。
太阳能光伏(PV)细胞已成为生产绿色电力的主要技术。这项创新利用了直射的阳光来产生动力,其安装灵活性已在PV面板上进行了大量投资。尽管有许多好处,但这些细胞因细胞温度升高而导致的效率下降而阻碍。因此,研究人员对旨在使用多种技术增强光伏细胞性能的可能解决方案进行了广泛的研究。本评论论文对光伏面板的冷却技术进行了彻底的分析。它涵盖了被动和主动冷却方法,包括水和空气冷却,相变材料以及各种不同的方法。在每个类别中,它都深入研究详细的子类别,例如蒸发冷却,浸入水,浮动系统,水管,冷却通道,喷水机,喷射撞击,地热冷却以及通过PV设计增强的自然对流。它还使用冷却管,散热器和空气收集器覆盖强制对流,以及相变材料(PCM),纳米流体,辐射冷却,热电方法,热管,热泵,热泵和其他创新技术的整合。用特定的示意图说明了每种方法,并进行了彻底讨论和比较。此外,本文介绍了适用于光伏面板的这些冷却方法的原始分类系统,为未来的研究提供了宝贵的指导,并洞悉提高效率。关键字:综合;比较;审查;光伏面板;冷却技术。
Dell PowerEdge R770是一台2U,双插座服务器,旨在具有最佳功率效率和平衡性能的高性能计算,以提高数据中心的生产率。它可以平衡高级计算能力与创新的设计效率最大化机架利用率并最大程度地减少能源消耗。是虚拟化,云本地应用,大规模分析和分布式推论等工作负载的理想选择。PowerEdge R770针对企业和可扩展基础架构进行了专门构建,可轻松地集成到现有环境中,配备了带有E型核的两个Intel®Xeon®6处理器,它的每瓦提供1.69倍的性能比以前的型号高1.69倍,可提高功率效率和提高机架架子的型号。GPU支持的添加进一步扩大了计算能力,从而确保了较低能源使用的高性能。这些服务器可在后部I/O热过道和前I/O冷通道配置中使用。前I/O寒冷过道可提高可服务性,减少维护时间,并提高效率,可靠性和正常运行时间,并通过优化冷却和能源使用来支持您的可持续性目标。它还具有戴尔的智能和冷却技术,可用于空气冷却以大大减少能源消耗,从而有助于长期运营节省。
Sheena S. S. S. S. S. S. S. S. S. S. S. Sheena S. S.工程政府理工学院,Kalamassery,683104,Ernakulam,喀拉拉邦摘要:由于与常规化石燃料汽车及其增加的能源需求相关的环境问题,电动汽车的使用引起了人们的关注。电池在充电和放电时产生的热量以及高操作温度会对电池的寿命产生不利影响,并导致热失控。电池热管理系统(BTM)从根本上需要确保电池安全运行并延长其寿命。已经开发了许多BTMS种类,包括使用空气冷却,液体冷却,基于PCM的冷却,热管,热电冷却等的BTMS类型。混合BTM(HBTMS)的开发结合了现在使用的主动和被动系统,这是由于每种类型都具有不同优势和限制的事实提示。当前的研究检查了几种混合BTMS配置,并将它们与现有BTMS进行了比较。研究集中在高排放率环境下采用HBTM的优势。它对具有液体冷却的PCM和PCMS中的性能影响参数的影响提供了批判性分析,以及将来开发HBTMS的此类研究范围。索引条款 - 电动汽车,锂离子电池,热管理。
电动汽车在很大程度上依靠可充电电池单元进行储能。空气冷却具有简单的设计和高可靠性,仍然是控制电池温度的有效方法。但是,由于空气的热容量有限,其热性能很差。为了提高传热系数,同时还可以最大程度地减少成本,这项研究采用了21,700个缸形电池电池模块的各种细胞构型,包括带有纵向气流的冷却鳍。使用有限体积方法模拟质量连续性,动量和能量保护方程式,对各种雷诺数(1,679≤RE≤33,588)进行了三维数值模拟(1,679≤RE≤33,588)。结果表明,具有纵向空气冷却的层流循环系统可以在低排放电流(≤1.0c)的最佳操作条件下维持电池(≤1.0c),即使在周围30°C的周围温度下,螺旋长度通过螺旋长度降低了50%,并改变其位置并更改其位置(即,均位置的位置,均位置为0.95,in 0.95 c. coce in 0.95 c. coce in 0.95; 48.7°C.将螺旋鳍环路从1到五个将最大t的最大值降低了7.4%,最大δT最大降低了29.8%。超过五个螺旋回路,随着δT最大的增加,模型的温度一致性会恶化。多项式方程,以估计电池在各种排放电流下电池模块的某些热性能。
