摘要 液态空气储能 (LAES) 处于中试规模。空气冷却和液化可储存能量;再加热可使空气在压力下重新蒸发,为涡轮机或发动机提供动力 (Ameel 等人,2013)。液化需要去除水和二氧化碳,防止结冰。本文提出随后对这种二氧化碳进行地质储存——为储能行业提供一种新型二氧化碳去除 (CDR) 副产品。它还评估了实施这种 CDR 方法的规模限制和经济机会。同样,现有的压缩空气储能 (CAES) 使用空气压缩和随后的膨胀。CAES 还可以增加二氧化碳洗涤和随后的储存,但需要额外付费。CAES 每公斤空气储存的焦耳比 LAES 少——每储存焦耳可能洗涤更多的二氧化碳。本世纪,实际运营的 LAES/CAES 技术无法提供全面的 CDR(Stocker 等人,2014 年),但它们可以提供 LAES 预计的 CO 2 处理量的约 4% 和当前技术 CAES 的不到 25%。本世纪,LAES CDR 可能达到万亿美元的规模(至少 200 亿美元/年)。由于需要额外的设备,改进的传统 CAES 存在更大但不太确定的商业 CDR 机会。CDR 对 LAES/CAES 使用量增长可能具有商业关键性,而必要的基础设施可能会影响工厂的规模和布局。理论上,低压 CAES 的建议设计在一个世纪内提供了全球规模的 CDR 潜力(忽略选址限制)——但这必须与竞争的 CDR 和储能技术进行成本核算。
诸如电动汽车中使用的锂离子电池(LIB)(EV)制成的电池组(EV)制成的电池组(EV)的电池组(EV)的热量损失,不均匀的温度分布和热失控,限制了其适用性,尤其是在高功率需求的情况下。本文分析了锂离子电池组中热量产生的原因,重点是它们对总热量产生的优势。它讨论了热产生,根本原因和影响参数引起的热问题。此外,它研究了冷却系统对峰值电池温度和温度均匀性及其设计,操作和性能参数的影响。审查表明,在设计冷却系统时,应在低排放率和高温期间与焦耳加热一起考虑熵加热,这是当EV在炎热天气下在高速公路上巡航时盛行的条件。电池的容量淡出是由温度依赖性因素(例如SEI层的生长,分离器耐药性上升和主动物质损失)引起的。因此,有效的电池冷却系统应维持15°C至35°C的温度范围和低于6°C的“ΔTmax”。在审查的冷却系统中,发现空气冷却简单且具有成本效益,但对于大型电池组来说效率低下。基于PCM的冷却技术提供了更高的温度均匀性,但对熔点敏感。液体冷却最有效,但增加了成本和复杂性。蒸发冷却可以作为空气和液体冷却之间的中间地面,并进一步研究将其付诸实践。电池热管理中未来的研究可能会通过考虑到电池运行方式的精确冷却需求来降低冷却系统的能源消耗。
城市化和全球变暖的结合会导致城市过热,并使由于气候变化而导致的极端热量事件的频率和强度更加复杂。然而,城市绿蓝色灰色基础设施(GBGI)可以减轻城市过热的风险,例如公园,湿地和工程绿化,这有可能有效降低夏季空气温度。尽管进行了许多审查,但有关量化GBGI冷却利益的证据基础仍然部分偏差,实施的实际建议尚不清楚。本系统的文献综述综合了减少热量和相关的共同拟合的证据基础,识别知识差距,并提出了有关其实施的建议,以最大程度地提高其利益。根据10个主要部门分类的51种GBGI类型筛选了27,486篇论文,202篇论文进行了审查。某些GBGI(绿色墙壁,公园,街道树)的城市冷却能力已经进行了很好的研究。但是,其他几个GBGI也获得了微不足道的(动物园,高尔夫球场,河口)或最少的(Private Garden,分配)的关注。在植物园(5.0±3.5 c),湿地(4.9±3.2 c),绿墙(4.1±4.2 c),街道树(3.8±3.1 c)和蔬菜阳台(3.8±2.7 c)中观察到最有效的空气冷却。Under changing climate conditions (2070 – 2100) with consid- eration of RCP8.5, there is a shift in climate subtypes, either within the same climate zone (e.g., Dfa to Dfb and Cfb to Cfa) or across other climate zones (e.g., Dfb [continental warm-summer humid] to BSk [dry, cold semi-arid] and Cwa [temperate] to Am [热带])。这些转变可能会导致当前GBGI的效率降低。鉴于多种服务的重要性,在计划未来的GBGGI时,在其功能,冷却性能和其他相关的共同配合之间至关重要。这个全局GBGI
3 芯片 DMD 反射法 使用 2.0KW 高效氙气灯泡时为 9,000 流明 14m /46ft* 2200:1(全开/关)高效氙气(2.0KW 灯泡)(适用于 0.98 英寸 DLP 芯片) 1.2-1.8:1 变焦 1.3 至 1.75:1 变焦 1.9 至 3.25:1 变焦 1.4 至 2.05:1 变焦 2.4 至 3.9:1 变焦 1.59 至 2.53:1 变焦 3.9 至 6.52:1 变焦 电动 电动水平/垂直 电动 遮光板(光快门),镜头内存可存储镜头设置(移位/变焦/对焦)移位范围取决于镜头 0.98 英寸 DLP 12º 2048 x 1080 内部液体冷却,空气冷却带防尘静电过滤器 10600BTU 10 m³/min 是 1 x LAN 端口 [RJ-45]、1 x USB 端口 [A 型]、1 x 串行端口 (RS- 232C) [D-sub(9 针)、1 x 通用 I/O [D-sub(37 针)] 3D 通用 I/O(1 x D-sub [15 针])、1 x 远程控制连接器 4 x HD-SDI 端口 [BNC] 2 x DVI 端口 [DVI-数字] 投影仪:100 至 240V AC,50/60Hz,单相 灯泡:200 至 240V,50/60Hz 单相 头部 500W;灯泡电源 2600W,总计 3100W 5° 至 35° C 10% 至 85%(无凝结) -10° 至 50° C 700 x 990 x 503 mm 不包括镜头、遮光罩和排气管 92 kg(不包括镜头) 小于 62 dB EN55022 1998,A 类 EN61000-3-11 EN55024-1998 EN61000- 3-12 广角转换镜头和电动转盘、内置替代内容处理器、用于替代内容处理器的可选输入板、空气过滤器、1 年、零件保修 可提供其他配件。请访问 www.nec-display-solutions.com 了解详情。
过去十年,对数据中心和网络服务的需求迅速增长。然而,由于更高效的电子硬件、向超大规模和云数据中心的迁移以及更高效的冷却基础设施等,近年来电力需求已经趋于稳定。本文对冷却技术进行了关键概述并讨论了研究差距。数据通信设施中的冷却技术大致可分为风冷和液冷系统。架空/地板下送风、热/冷通道布局和热/冷通道遏制是优化风冷系统性能的主要策略。架空地板架构已在数据通信设施中得到广泛采用,但存在大量气流泄漏(约 25-50%)。研究发现,最佳通风系统是硬地板设计,采用架空冷风输送和热风回风管道,而不是基于房间的送风和回风。冷通道遏制可以更好地降低机架的最高入口温度并抑制冷却系统故障时的温升,而热通道遏制可以提供更低的机架平均入口温度和更小的标准差,并且受服务器周围气密性的影响更小。随着机架功率密度超过 10 kW/机架且热流超过 100 kW/cm 2 ,传统的风冷系统不再是可行的热管理解决方案。喷雾冷却、冲击射流、浸没冷却、液冷微通道和热管等液体冷却方法是克服风冷系统容量限制的新兴技术之一。对于浸没冷却,过渡到过冷两相流沸腾、通过添加微结构或不规则性来创造更多的成核位点和更大的传热表面积来增强传热以及利用纳米流体是受到学者关注的突出增强策略。将电力电子模块浸入液体中可使热阻降低至空气冷却系统的 25%,或微通道或喷雾冷却等液体冷却系统的 30-50%。根据现有的冷却系统、总体热负荷和热点,热管系统可以作为独立单元或与空气冷却系统结合使用,即所谓的混合系统,为数据中心提供服务。与典型的空气冷却系统相比,混合系统可以分别降低 37-58% 和 20-70% 的年度冷却负荷系数和能耗。
CAES 技术的比较和替代方案 在讨论绝热 CAES(例如 Storelectric 提出的技术)时,了解不同类型的 CAES 非常重要 — 本质上是传统、等温和绝热,以及这些类型的变体。它们的性质非常不同,尤其是绝热 CAES 经常与等温 CAES 混淆,例如 Lightsail、SustainX 和 General Compression 提出的 CAES。事实上,两者根本不同。请注意,所有效率均引用电网到电网和寿命,而电池通常引用端到端 [忽略辅助负载] 和第 1 天 [忽略退化]。还要注意,电池往往会引用不包括土地、电网连接、开发成本等的安装成本,而这些都包含在 Storelectric 的所有估算中。 CAES 压缩空气能储能 (CAES) 使用多余或廉价的能源(例如来自电网或可再生能源发电)将空气压缩至高压 — 通常为 70bar。当再次需要能量时,空气被释放来为涡轮机提供动力(或辅助动力),从而再生电能。由于压缩空气的能量密度不高,需要大量的空气,因此采用地质储存;现有的CAES 采用盐穴,这是目前用于大量储存天然气和其他碳氢化合物、危险废物等的众所周知的技术。尽管欧洲近 1/3 的天然气储量都存储在盐穴中,但从未发生过盐穴坍塌的情况。盐穴是人工建造的,位于盐盆内,世界各地都有。传统CAES 将空气压缩到 70bar 时,温度会升高到 ~650 o C。但空气不能储存在高于 ~42 o C 的盐穴中,否则盐穴会恶化。因此,传统的CAES 会将压缩热浪费在冷却塔中。然而,在大约环境温度下从 70bar 膨胀会使空气冷却至约 -150 o C。这不仅会冻结环境,还会冻结设备,从而破坏设备,因此需要重新加热。传统的 CAES 通过燃烧气体来吸收膨胀热量。Huntorf 和 McIntosh 使用的方法是将压缩空气送入燃气轮机,从而使涡轮机更省油。但它仍然燃烧同等规模发电站 50-60% 的天然气(对于 McIntosh;Huntorf 为 60-70%),其往返效率(所有能量输出:输入)最多为 50%(Huntorf 为 42%),尽管更现代的设备希望达到约 54%。由于膨胀是通过经过特殊改造的涡轮机进行的,因此传统的 CAES 仅适用于固定尺寸。Storelectric 的 CCGT CAES 是传统的(“CCGT” 因为它基于联合循环发电站的设计),但具有以下优点:
G 部分:节能和替代能源抵免 44. 太阳能抵免 a. 基本太阳能抵免 南卡罗来纳州法典 §12-6-3587 允许纳税人抵免相当于购买和安装太阳能系统所产生成本的 25% 的所得税,包括小型水力发电系统或用于加热水、空间供暖、空气冷却、节能日光照明、热回收、节能需求响应或在纳税人位于南卡罗来纳州的设施(或住宅)内发电的“地热机械和设备”。在系统安装完成之前不能申请抵免。抵免金额不得超过每个设施 3,500 美元或纳税人纳税年度纳税义务的 50%(以较低者为准)。每个设施超过 3,500 美元的抵免可以结转 10 年。可在 TC-38 表“太阳能抵免”中申请抵免。 “系统”包括所有控制装置、水箱、泵、热交换器以及其他直接专用于太阳能系统的设备。但不包括任何土地或建筑结构元素,如墙壁、屋顶或通常包含在结构中的其他设备。 要获得抵免资格,系统必须通过非营利性太阳能评级和认证公司或州能源办公室认可的类似实体的性能认证。 该法规还定义了“地热机械和设备”。 注意:购买和安装“地热机械和设备”可获得的抵免有效期至 2032 年 1 月 1 日。 b. 太阳能设备抵免 – 合格场地 – 已过期抵免 南卡罗来纳州法典 §12-6-3775 规定,所得税抵免额相当于太阳能财产成本(包括安装成本)的 25%。 “太阳能资产”是指任何标称容量至少为 1,900 千瓦的非住宅太阳能设备,该设备使用太阳辐射替代传统能源,用于水加热、主动空间加热和冷却、被动加热、采光、发电、蒸馏、海水淡化、解毒或生产工业或商业工艺热。某些相关设备也包括在此术语中。南卡罗来纳州法典 §12-6-3775(A) 和 (B)。为了获得抵免资格,纳税人必须在南卡罗来纳州建造、购买或租赁并投入使用太阳能资产。此外,该资产必须位于法规规定的合格地点。如果纳税人租赁该资产,则必须满足某些额外要求。南卡罗来纳州法典 §12-6-3775(B) 和 (E)。
IL电力合作社记录的激励措施IL电力合作社协会(AIEC)从2010年5月至2011年10月协调了一项名为Home for Illinois电力合作社的主要住宅能源效率计划,从而训练了各种效率措施。AIEC是代表25个伊利诺伊州分销电动合作社的全州贸易协会,该协会为伊利诺伊州102个县的90个县的全部或部分提供了300,000多名消费者。房屋使用250万美元用于美国联邦重新投资和回收法(ARRA)资金,这些资金是由能源部通过国家能源办公室分配的。家庭管理员直接向IL州能源办公室(在IL DCEO内)报告。除了每月进度和向州能源办公室的财务报告外,在该计划正在进行的过程中,还向DCEO和DOE报告了一系列季度指标。最后,该家庭计划在2011年秋季进行了为期一周的联邦DOE审计。家庭计划为住宅能源审核,隔热和气候,热泵/炉/空调升级和热泵热水器提供了激励资金。对合作成员的房屋进行了近3500次住宅审计,而ARRA资助则在855%以上的房屋中升级了效率。通过家中促进的地热热泵,由943个地热或地面源热泵系统促进。这些系统的平均成本为$ 15,829.77。他们平均每个安装4吨,平均成本为每吨安装地热容量3,957.44美元。所有地热系统都必须满足能量之星的最低资格,以获得激励措施。这些系统主要是水平和垂直闭环装置。有1,500美元的回扣激励措施用于安装地热热泵。每个合作成员只有一个折扣 - 带有多个地热单元的装置只有一个回扣。绝大多数系统都是改造项目 - 只有79个进入了新建的房屋。剩余的864个地热系统已安装在现有房屋中,取代了现有的供暖/冷却系统。家庭计划记录了被地热系统取代的加热/冷却系统的类型。到目前为止,最受欢迎的替代品是与中央空气冷却系统的燃气炉或锅炉的传统组合。在864个改造中,超过一半(444)的气体/电力组合用于加热和冷却。(数据未分解在热水锅炉和强制气炉之间。)
新闻稿严格禁止发布,直至 2021 年 6 月 16 日上午 10:00 新加坡国立大学和南洋理工大学启动首个热带数据中心试验平台 新的 2300 万新元计划旨在为位于热带地区的数据中心开拓绿色高效的冷却解决方案,使其实现最佳运行 新加坡,2021 年 6 月 16 日——新加坡国立大学 (NUS) 和新加坡南洋理工大学 (NTU Singapore) 与新加坡数据中心行业的主要利益相关者一起,建立了一项新的 2300 万新元研究计划,旨在为位于热带地区的数据中心开发创新和可持续的冷却解决方案。新加坡国立大学将建立一个最先进的试验平台设施,以促进此类先进冷却技术的共同创造和展示。新的可持续热带数据中心试验台 (STDCT) 是热带地区首个此类试验台,将成为学术界和业界共同努力的创新中心,为该地区的数据中心行业提供面向未来的保障。该项目由新加坡国立大学主办的新加坡冷却能源科学与技术 (CoolestSG) 联盟策划,研究人员将开发和展示节能冷却技术,以在热带数据中心环境中取得突破。该试验台设施预计将于 2021 年 10 月 1 日投入运营。该项目由新加坡国家研究基金会 (NRF) 和主要行业合作伙伴 Facebook 共同资助。该研究由新加坡国立大学和南洋理工大学牵头,并得到信息通信媒体发展局 (IMDA) 的支持。其他五个行业合作伙伴包括 Ascenix Pte Ltd、CoolestDC Pte Ltd、Keppel Data Centres、New Media Express Pte Ltd 和 Red Dot Analytics Pte Ltd。对高效和可持续数据中心的需求不断增长 数字经济的兴起导致对容纳计算和数据存储基础设施的数据中心的需求不断增长。由于计算机服务器产生大量热量,这些数据中心目前按照工业惯例在 23 至 27 摄氏度的温度下进行空气冷却,环境湿度为 50% 至 60%。维持这种受控环境需要高能耗,从而导致高成本和碳排放——尤其是对于新加坡这样的热带国家而言。新加坡为东南亚约 60% 的数据中心提供服务。新加坡的数据中心消耗了该国总能源需求的近 7%,预计到 2030 年这一数字将达到 12%。因此,越来越需要在同一占地面积内整合更多计算能力来降低功耗和碳足迹,同时开发解决方案来满足数据中心的冷却需求。
新闻稿严格禁止发布,直至 2021 年 6 月 16 日上午 10:00 新加坡国立大学和南洋理工大学启动首个热带数据中心试验平台 新的 2300 万新元计划旨在为位于热带地区的数据中心开拓绿色高效的冷却解决方案,使其最佳运行 新加坡,2021 年 6 月 16 日——新加坡国立大学 (NUS) 和新加坡南洋理工大学 (NTU Singapore) 与新加坡数据中心行业的主要利益相关者一起,建立了一项新的 2300 万新元的研究项目,以开发创新和可持续的冷却解决方案,用于位于热带地区的数据中心。新加坡国立大学将建立一个最先进的试验平台设施,以促进此类先进冷却技术的共同创造和展示。新的可持续热带数据中心试验台 (STDCT) 是热带地区首个此类试验台,将成为学术界和业界共同努力确保该地区数据中心行业面向未来的创新中心。该项目由新加坡国立大学主办的新加坡冷却能源科学与技术 (CoolestSG) 联盟策划,研究人员将开发和展示节能冷却技术,以在热带数据中心环境中取得突破。试验台设施预计将于 2021 年 10 月 1 日投入运营。该项目由新加坡国家研究基金会 (NRF) 和主要行业合作伙伴 Facebook 共同资助。该研究由新加坡国立大学和南洋理工大学牵头,并得到信息通信媒体发展局 (IMDA) 的支持。其他五个行业合作伙伴包括 Ascenix Pte Ltd、CoolestDC Pte Ltd、Keppel Data Centres、New Media Express Pte Ltd 和 Red Dot Analytics Pte Ltd。对高效和可持续数据中心的需求不断增长 数字经济的兴起导致对容纳计算和数据存储基础设施的数据中心的需求不断增长。由于计算机服务器产生大量热量,这些数据中心目前按照工业惯例在 23 至 27 摄氏度的温度下进行空气冷却,环境湿度为 50% 至 60%。维持这种受控环境需要高能耗,从而导致高成本和碳排放——尤其是对于新加坡这样的热带国家而言。新加坡为东南亚约 60% 的数据中心提供服务。新加坡的数据中心消耗了该国总能源需求的近 7%,预计到 2030 年这一数字将达到 12%。因此,越来越需要在同一占地面积内整合更多计算能力来降低功耗和碳足迹,同时开发解决方案来满足数据中心的冷却需求。
