探地雷达 (GPR) 是一种成像系统,可用于观察现场地下情况,以研究土壤的层组成或埋藏物体的存在。由于地面的电磁特性,此类图像通常具有非常低的信噪比 (SNR)。此外,根据设计,埋藏物体被观察为双曲线,其形状可能与物体类型(例如空腔或管道)相关联。在这种情况下,埋藏物体的分类在民用应用中非常重要,例如恢复埋藏天然气管道的位置 [1] 或军事应用,例如地雷探测 [2]。为了进行这种识别,一些研究考虑使用信号反演技术 [3] 来提高 SNR,以便地球物理学家进行手动解释。当需要处理大量图像时,这种解决方案可能不切实际,因为它需要专门的人力资源。因此,自动识别方法已成为必需,并受到社区的关注。GPR 信号的自动分类分两步进行。首先,感兴趣区域(ROI)对应于
建议使用几种地球物理技术进行空腔探索,例如接地式雷达(GPR),重量法,磁力测定法,电阻调查和地震反射率。但是,由于喀斯特环境的复杂和动态性质,它们的间接表面应用与某些不确定性有关。例如,永远无法提前确定它是干的还是水洞,或者是否具有沉积物盖(这使其不适合特定仪器)。另一个挑战是,在一定深度处的小洞穴可能会在更大深度的较大洞穴中产生相似的传感器观察,从而导致映射歧义。因此,依赖环境的不同物理特性的多传感器探索比单个技术的精度提高了结果。不同技术与其他信息的组合(例如本地地质,地下特征和地形的详细信息)可以进一步改善结果。在本文提出的研究中,在已知洞穴上方的表面和内部进行了调查运动,以调查多传感器洞穴检测的有效性。
随着城市化的快速化,许多曾经被认为稳定的领域变得脆弱,强调了风险评估和管理以确保公共安全的重要性。城市扩张通常会导致建筑物,道路和地下基础设施的建设增加,这在地下环境上增加了压力。地下空腔的崩溃,无论是由于喀斯特侵蚀等自然现象还是人类活动,例如采矿和基础设施发展,都对城市地区构成了主要风险。这些事件通常是不可预测的,导致了巨大的后果,正如2010年在危地马拉市崩溃所证明的那样,那里的60米深的污水坑吞噬了几座建筑物,将基础设施和人口暴露于严重的危险中(FU,2022年; Hermosilla,2012年)。在世界各地都报告了类似的事件,造成经济损失,取代社区并危及人类的生命。鉴于这些事件的频率和严重程度的增加,需要开发有效的方法来提早检测和降低风险。
我们提供了一个基于经典电磁学的理论框架,以描述Fabry-Pérot腔的光学特性,并用多层和线性手性材料填充。我们发现了转移 - 矩阵,散射矩阵和绿色功能方法之间的正式联系,以计算依赖极化的光学传播和空腔模型的圆形二色性信号。我们展示了诸如洛伦兹的互惠和时间反向对称性之类的一般对称性如何限制此类腔的建模。我们采用这种方法来通过数值和分析研究,由金属或螺旋性的介电光子晶体镜制成的各种Fabry-Pérot腔的特性。在后一种情况下,我们根据在镜面界面上反映的电磁波的部分螺旋性保存分析了手性腔极性的发作。我们的方法与设计创新的Fabry-Pérot腔有关手性传感和探测腔体模化的立体化学相关。
据报道,垂直外部空腔中的高度稳定的二极管无环状液体染料激光。设计很简单(无需制造过程步骤,不需要流体电路),紧凑(〜cm尺寸)和具有成本效益。报道了18%的光学效率为18%,具有出色的光稳定性 - 在50 Hz处140万脉冲后,没有效率下降,该值与流动系统相当,并且远高于有机固态激光器可实现的值。我们表明,热效应在稳定性和该激光器的动力学上都是中心的。在不同的泵脉冲持续时间/重复速率上详细研究了激光堆积和关闭动力学;他们揭示了脉搏缩短,泵脉冲持续时间和重复速率增加,这被证明是由于热透镜衍射损耗引起的。此激光结构提供了一个非常方便,简单的平台,用于测试或收集解决方案可供处理的增益材料。
在回收铝屑时,氧化铝层会产生很大的问题,限制铝金属在相邻屑之间的结合。多位研究人员 [9,27,29,30] 报告称,如果氧化铝层破裂并分散在基质中,则回收材料的屈服强度、抗拉强度和显微硬度会提高,因为会形成由铝和氧化铝颗粒组成的复合材料。然而,他们也观察到这种回收铝复合材料的塑性显著下降。然而,其他作者 [18] 观察到氧化物会刺激空腔成核,从而产生过早断裂,随着氧化物含量的增加,材料的伸长率会降低。此外,他们指出,氧化物的浓度对回收材料的机械性能影响较小 [13,31],这与之前提出的观点相矛盾。总体而言,就屑片之间的结合而言,无论是液体还是固体回收屑的方法,氧化层始终被视为一道屏障。
摘要:激光无处不在,用于信息存储,处理,通信,传感,生物学研究和医疗应用。为了减少其能量和材料的使用,一个关键的追求是将激光器降低到纳米腔。获得最小的模式量需要等离激液腔,但是对于这些,增益仅来自一个或几个发射器。到目前为止,由于增益低和空腔损失高,在此类设备中的激光是无法实现的。在这里,我们演示了一种接近单分子发射极制度的等离激液量的“发射器激光”的形式。少数发射机的激光过渡显着宽广,取决于分子的数量及其各个位置。我们表明,可以通过开发一种延伸以前的弱耦合效率的方法来理解这种非标准的少数发射机。我们的工作为开发纳米剂应用以及以少数发射器的极限开发的基础研究铺平了道路。
摘要:激光无处不在,用于信息存储,处理,通信,传感,生物学研究和医疗应用。为了减少其能量和材料的使用,一个关键的追求是将激光器降低到纳米腔。获得最小的模式量需要等离激液腔,但是对于这些,增益仅来自一个或几个发射器。到目前为止,由于增益低和空腔损失高,在此类设备中的激光是无法实现的。在这里,我们演示了一种接近单分子发射极制度的等离激液量的“发射器激光”的形式。少数发射机的激光过渡显着宽广,取决于分子的数量及其各个位置。我们表明,可以通过开发一种延伸以前的弱耦合效率的方法来理解这种非标准的少数发射机。我们的工作为开发纳米剂应用以及以少数发射器的极限开发的基础研究铺平了道路。
四方在JAXA“创新型未来宇宙运输系统研究开发计划”*3的框架下,自2022年9月起开始对“利用镁合金丝材的激光丝材DED AM制造技术研究”*4进行研究(以下简称“本次联合研究”),目的是通过减轻火箭重量,大幅降低成本。近年来,随着汽车电动化的推进、民用飞机需求的不断增长,火箭以外的各工业领域的轻量化需求日益高涨,镁合金备受瞩目。 然而,镁合金通常采用称为压铸*5的铸造方法进行加工,这带来了无法创建具有内部空腔的形状的问题。此外,可高精度加工复杂形状的金属3D打印机主要采用PBF法*6,即利用热量熔化金属粉末进行增材制造。然而,当使用易燃性极强的镁合金作为粉末材料时,存在因氧化或粉尘爆炸而导致劣化的风险,难以安全操作。
摘要 .本文探讨了基于“绿色”能源利用的高层建筑节能技术方案,包括:采用风光互补发电装置和垂直轴涡旋风力发电装置,既利用高空水平风流的能量,又利用上升气流的能量。在分析现有技术的基础上,提出了建设风光互补发电装置节约高层建筑能源的一般原则,包括:为保证安全运行和无远程干扰,建议采用具有捕捉风流的空腔的穹顶设计来封闭风力涡轮机;为保证环境友好和便于管理,建议采用模块化设计的各种垂直涡旋风力涡轮机;为高效利用太阳能,建议将光伏电池集成到穹顶的外部结构中;为降低工程造价,建议利用现有的高层建筑。提出一种涡流风力发电装置,可以利用小风和低位热流,减少低频振动,提高风能利用的稳定性和效率,并且易于安装、维护和修理。