空腔量子电动力学为设计和控制光 - 二聚体相互作用提供了理想的平台。在这项工作中,我们研究了谐波陷阱中许多粒子系统中的共同现象,该系统耦合到同型腔腔吸尘器。系统夫妻通过其质量中心和集体极化状态聚集到腔场。腔场介导对成对的长距离相互作用并增强颗粒的有效质量。这导致在物质基态密度中的定位增强,当光和物质在共振上时具有最大值,并以粒子数表现出类似dicke的集体行为。轻度 - 物质相互作用还修改了极化系统的光子性能,因为基态填充了束光子。此外,还表明,磁磁性A 2项对于系统的稳定性是必需的,否则是较高的基态不稳定性。我们证明,通过外部磁场并通过监测Landau-Zener的过渡概率,极化人群的相干转移是可能的。
在非线性物理系统中识别逃避直接实验检测的隐藏状态很重要,因为干扰和噪音可以将系统置于隐藏状态,并带来有害后果。我们研究了一个空腔岩石系统,其主要物理学是光子和镁kerr效应。在数值实验中扫描分叉参数(如在实际实验中所做的那样)导致具有两个不同稳定稳态状态的磁滞回路,但是分析计算在环路中赋予了第三个折叠的稳态“隐藏”,这导致了隐藏可粘性的现象。我们提出了一种实验可行的控制方法,将系统驱动到折叠的隐藏状态中。我们通过三元腔镁质系统和基因调节网络证明了这种隐藏的多稳定性实际上很普遍。我们的发现阐明了非线性物理系统中隐藏的动力状态,这些状态不是直接观察到的,但可以在应用中带来挑战和机遇。
摘要:我们证明,热平衡中分子的集体振动强耦合可以在热力学极限下引起明显的局部电子极化。我们首先表明稀释型分子在稀 - 加仑限制中强烈耦合分子的整体的全部非遗传性Pauli- Fierz问题降低了出生的 - Oppenheimer近似 - 对电子结构的空腔 - Hartree方程。因此,每个分子都与所有其他分子的偶极子偶联体验,这在热力学极限(大集合)中等于不可忽略的值。因此,集体振动强耦合可以强烈改变单个分子在整体内的局部“热点”。此外,发现的腔诱导的极化模式具有零净极化,类似于自旋玻璃(或更好的极化玻璃)的连续形式。我们的发现表明,对极化化学的彻底理解需要对穿着的电子结构进行自洽处理,这可能会引起众多,迄今为止被忽视的物理机制。
摘要:空腔量子电磁性的中心主题是单个光学模式与单个物质激发的耦合,导致双腔极化子的双重组控制耦合构成的光学特性。尤其是在Ultrastrong耦合方案中,那里的真空狂欢频率与光的准载体频率的比率是ωr ∕ c,接近Unity,Polariton Doublet Bridges巨大的频谱宽度2ωr,以及与偏离光和物质模式的进一步相互作用。尽管增加了复杂性,但由于增加了设计光 - 耦合共振的自由度,因此最终的多模式耦合最近引起了人们的注意。在这里,我们通过实验实现了一种新型策略,以通过在子波量表上定制多种平面金属Thz共振器的多种模式的空间过度雕刻超强的多模式耦合,以及多种平面金属THZ谐振器的空间过度和多种模式的降级两维电子的回旋量。我们显示
摘要 - 这项研究对近紫外光谱中的低语画廊模式(WGM)微球光学特性进行了全面分析,并通过频率锁定来减少激光线宽的实际实现。由于利用了坚固的角度抛光纤维,可以实现光耦合,从而探索了各种耦合行为。固有的Q 0-因子,在2下测量。2×10 8,以及7个技巧。3×10 4,在420 nm处报告。讨论了导致Q 0-因素的物理机制,并绘制了改善性能的路线。通过将频率锁定到WGM微孔的高Q共振上,已经获得了外部空腔二极管激光从887 kHz降低到91 kHz的线宽。对这些结果的研究将绩效评估带来,从而对局限性有透彻的了解并确定增强降噪的潜在途径。如此高的Q因子和高技巧是简化基于WGM微孔子的光子设备的关键要素。
摘要:在研究和工程中,短激光脉冲是计量和通信的基础。由于紧凑的设置尺寸,通过被动模式锁定的脉冲产生特别理想,而无需主动调制需要专用的外部电路。但是,完善的模型并不能涵盖比型往返时间更快的增益媒体中的常规自动化。对于量子级联激光器(QCLS),这标志着其操作中的显着限制,因为它们表现出与间隔过渡相关的picsecond增益动力学。我们提出了一个模型,该模型对最近证明的第一个被动模式锁定的QCL的脉冲动力学提供了详细的见解。存在沿空腔的多层石墨烯所实现的不连贯的饱和吸收器的存在,通过表现出与增益介质相似的快速恢复时间,将激光驱动到脉冲状态。这种激光操作的预先未研究的状态揭示了增益培养基对不均匀分布的腔内强度的良好响应。我们表明,在存在强
在量子电路的内部层内发生的测量(中路测量)是有用的量子计算原始的,最著名的是用于量子误差纠正。中路测量值同时具有经典和量子输出,因此它们可能会受到误差模式,这些模式对于终止量子电路的测量不存在。在这里,我们展示了如何使用一种称为量子仪器线性栅极组合层摄影(QILGST)的技术来表征由量子仪器建模的中路测量值。然后,我们将此技术应用于在多Qubit系统内的超导式传输矩形上表征分散测量。通过改变测量脉冲和随后的门之间的延迟时间,我们探讨了残留空腔光子群体对测量误差的影响。QILGST可以解决不同的误差模式并量化测量中的总误差;在我们的实验中,对于1000 ns以上的延迟时间,我们测量了总误差率(即半钻石距离)!!= 8.1±1.4%,读出97.0±0.3%的读数和输出量子态填充率分别为96.7±0.6%和93.7±0.7%,分别为0和1时。
在全球谷物产量不断增加的背景下,伴随着各种农药,除草剂,杀菌剂和其他化学农药的大量投资。它引起了不可避免的环境问题和食品安全问题。当前的研究表明,使用环糊精及其衍生物保护农药可以显着减少污染环境的农业化学数量。使用环糊精的空腔特性,我们可以参考药物分子生产环糊精和环糊精聚合物形成包含化合物的类似方式。总体而言,β-环糊精及其衍生物被用作一种新的农药赋形剂,以提高农药的稳定性,防止其氧化和脱位,改善农药的溶解度和生物利用度,减少药物的毒性副作用,并掩盖药物的食物。在这篇综述中,我们着重于总结β-环糊精及其在农药和其他领域中的衍生物的最新研究进展,并在各种应用中提供了β-环糊精聚合物的系统分类,以及新的Shinthesis方法和技术。最后,预见了环糊精样聚合物的未来发展,并深入讨论并解决了研究引起的问题。
一维(1D)固体的电导率相对于其长度表现出指数衰减,这是定位现象的众所周知的表现。在这项研究中,我们介绍了将一维半导体插入单模电磁腔所产生的电导率改变,并特别集中在非排定掺杂的状态上。我们的方法采用了绿色的功能技术,适用于对腔体激发状态的非扰动考虑。这包含相干的电子腔效应,例如零点爆发场中的电子运动,以及在隧道过程中的不一致的光子发射过程。跨腔的电子传递的能量谱发育与虚拟光子发射,沿谐振水平的通过以及光子重吸收相关的FANO型共振。FANO共振的质量因素取决于中间状态是否耦合到铅,当该状态深入障碍潜力中时达到最大值。耦合到空腔也提高了浅结合状态的能量,使它们接近传导带的底部。这种作用导致低温下电导率的增强。
使用外部刺激对来宾释放和重新捕获的精确控制是一个宝贵的目标,有可能实现新的化学纯正方式。包括分子胶囊配体核心内的氧化还原部分,以触发客人的释放和吸收,但事实证明是有效的,但是该技术仅限于某些胶囊和客人。在此,证明了来自二置,三位文和四型配体的一系列新型金属有机胶囊的构造,所有这些都包含与Fe II中心协调的氧化还原活性的Azo基团。与基于亚米吡啶的类似物相比,这种新的基于硫基吡啶的胶囊具有较大的空腔,能够封装更多庞大的客人。还原胶囊后,它们的客人被释放,然后在胶囊通过氧化再生时可以重新安装。由于氧化还原中心位于配体臂上,因此它们是模块化的,并且可以连接到各种配体核心,以变化和可预测的结构。因此,该方法显示了一种通用方法,用于设计氧化还原控制的访客释放和摄取系统。