2.变更:增加对储罐和空隙中的铁质管道进行 NACE 4/SSPC-SP 7 刷式喷砂清理的许可:在 FY-23 标准项目 009-32 更新中增加了新的段落 3.1.4.5,其中规定:“储罐和空隙中的现有铁质管道可按照 NACE 4/SSPC-SP 7 的 2.5 和 2.9 进行准备。” 理由:目前,FY-22,变更 1,标准项目 009-32,段落 3.1.4 要求在储罐内的任何铁质管道上应用相同的 SSPC-SP 10,接近白色金属级别的储罐表面喷砂清洁度。HII-NNS 在其变更提案中指出,要求对铁质管道进行 SSPC-SP 10 会产生涂层表面处理对管壁厚度产生不利影响的风险,并导致更换管道的计划外增长工作。HII-NNS 变更提案指出,航空母舰技术救济函;针对 CVN 74 的 2019 年 9 月 18 日颁布的 9631 Ser 05V/085 号法规、针对 CVN 73 的 2015 年 6 月 15 日颁布的 9631 Ser 05V/097 号法规以及针对 CVN 72 的 2011 年 9 月 20 日颁布的 9631 Ser 11/0600 号法规允许将水箱和空隙中现有的铁质管道和管道组件(饮用水、储备给水或淡水排水收集水箱除外)处理至 SSPC-SP 7 级刷洗喷砂清洁度水平。此外,普吉特海湾海军造船厂 (PSNS) 使用的现行当地工艺指令 IPI 0631-905 Rev F Ch- 2(日期为 2020 年 8 月 20 日)规定:“浸没区域的铁质和有色金属管道和电缆盘的准备方式应与周围区域一致。喷砂该区域时,根据适用情况,将管道准备为 SSPC-SP 7 或 SSPC-SP 16,但不得残留腐蚀或氧化皮。如果遗漏了小区域,可以按照上述规定将其准备为 SSPC-SP 2、SSPC-SP 7 或 SSPC-SP 16(不得在管道或电缆盘上使用机械工具)。除非相关技术规范有明确规定,否则不得对核相关管道进行准备或涂漆。”因此,按照 SSPC-SP 7 准备铁质管道的许可已经在航空母舰和其他级别的船舶上实施。SEA 05P2 没有数据显示按照 SSPC-SP 7 准备的铁质管道的涂层防腐性能不足,因此这一变化将限制涂层表面准备过程损坏管道的风险;使工作实践与现有程序保持一致;加快铁质管道表面准备过程;并减轻更换因表面准备而损坏的铁质管道而导致的进度延误风险。
夹层灌注所有灌注技术中最基本、最常见的工序是先将纤维层(芯体)和其他插入件放置在模具的外表面上,无需使用树脂。这一过程可以慢慢进行,以确保造型清晰,而这是决定作品和整个项目最终质量的重要因素。完成第一步后,将真空袋和其他灌注专用物品放置在组件上方。利用真空密封组件后,进行第一次压实,以稳定作品、增加单位体积的纤维含量并减少空隙。达到所需的压缩程度后,打开进气口,使液态树脂浸透作品,同时使用真空管将内部的所有空气排出。
功能性磁共振成像(fMRI)是一种至关重要的技术,可以洞悉人类认知过程。从fMRI测量中积累的数据会导致体积数据集随时间变化。但是,分析此类数据的挑战是由于大脑中信息的表示方式的噪音和人与人之间的变化。为了应对这一挑战,我们提出了一种新颖的拓扑方法,该方法在fMRI数据集中编码每个时间点,作为拓扑特征的持久图,即数据中存在的高维空隙。 此表示自然不依赖于voxel-voxel对应关系,并且对噪声是可靠的。 我们表明,可以将这些随时间变化的持久图聚类以发现参与者之间有意义的分组,并且它们在研究执行特定任务的受试者的受试者内部脑状态轨迹也很有用。 Here, we apply both clustering and tra- jectory analysis techniques to a group of participants watching the movie ‘Partly Cloudy'. 我们观察到大脑状态轨迹以及观看同一电影的成人和儿童之间的整体拓扑活动的显着差异。数据中存在的高维空隙。此表示自然不依赖于voxel-voxel对应关系,并且对噪声是可靠的。我们表明,可以将这些随时间变化的持久图聚类以发现参与者之间有意义的分组,并且它们在研究执行特定任务的受试者的受试者内部脑状态轨迹也很有用。Here, we apply both clustering and tra- jectory analysis techniques to a group of participants watching the movie ‘Partly Cloudy'.我们观察到大脑状态轨迹以及观看同一电影的成人和儿童之间的整体拓扑活动的显着差异。
摘要:添加剂制造(AM)缺陷在纤维增强的热塑性复合材料(FRTPC)中面临着重大挑战,直接影响其结构和非结构性表现。通过基于材料挤出的AM产生的结构,特别是融合的细丝制造(FFF),逐层沉积可以引入孔隙率(在某些情况下最高10-15%),分层,空隙,纤维错位和层次之间的不完整融合。这些缺陷会损害机械性能,从而导致抗拉强度最多降低30%,在某些情况下,疲劳寿命高达20%,严重降低了该复合材料的整体性能和结构完整性。常规的非破坏性测试(NDT)技术通常难以有效地检测此类多尺度缺陷,尤其是当解决方案,穿透深度或物质异质性构成挑战时。本综述对FRTPC中的制造缺陷进行了严格的研究,根据形态,位置和大小对FFF诱导的缺陷进行了分类。讨论了能够检测到小于10 µm的空隙,以及与自感应纤维集成的结构健康监测系统(SHM)系统的高级NDT技术。与传统的NDT技术相比,还突出了机器学习算法(ML)算法在增强NDT方法的灵敏度和可靠性中的作用,这表明ML积分可以提高缺陷检测高达25–30%。最后,研究了配备连续纤维的自我报告FRTPC的潜力,用于实时缺陷检测和原位SHM。通过将ML增强的NDT与自我报告的FRTPC相结合,可以显着提高缺陷检测的准确性和效率,从而通过启用更可靠的,缺陷,更可靠的,最低的FRTPC组件来促进AM在航空航天应用中的广泛采用。
我们介绍了一个定理,该定理限制在球形表面上的kirigami tessellations时,带有图案性缝隙形成了自由形式的四边形网格。我们表明,球形kirigami镶嵌具有一个或两个兼容状态,即,最多有两个沿部署路径的隔离菌株配置。该定理进一步揭示了从球形到平面kirigami tessellations的刚性到扁平的过渡,并且仅当狭缝形成平行四边形空隙以及消失的高斯曲率时,这也通过能量分析和模拟来证实。在应用方面,我们显示了基于定理的Bistable球形圆顶结构的设计。我们的研究为基于欧几里得和非欧几里得几何形状的可变形结构的合理设计提供了新的见解。
摘要:生成内部既有顺磁性掺杂又可能装载治疗剂的介孔纳米粒子,为可编程治疗诊断学提供了很大帮助。如果可以立体控制内部粒子空隙对外部溶液的暴露,那么水和药物的扩散就可以得到控制。DNA 是一种可编程的自组装材料,其中各组成部分之间相互作用的强度和特性可以使用简单的沃森-克里克碱基配对规则来设计。它可以用作治疗诊断设备的构造材料,当满足一组条件时,可以检测或释放药物和/或信号。该项目将设计、制造和表征这些可以响应与疾病状态相关的生物线索的混合纳米材料。
摘要。量子计算,尤其是在短时间内学习的量子计算,通过世界各地的研究组引起了很多兴趣。这可以在一定程度上应用量子原理的模式分类的拟议模型数量越来越多。鄙视越来越多的模型,在实际数据集上测试这些模型,而不仅仅是在合成数据集上的空隙。这项工作的目的是使用量子分类器用二进制属性对模式进行分类。特别是,我们显示了应用于图像数据集的完整量子分类器的结果。实验在处理平衡的分类问题以及少数群体最相关的不平衡类时表现出了有利的输出。这在医疗领域是有希望的,通常重要的班级也是少数群体。