致谢作者要感谢Claudia Binder的专家技术援助和医学博士。Aida Salameh为培养基的表征提供了帮助。这项工作得到了欧洲研究委员会的赠款(ERC合并赠款865634“ Presynplast” S.H.和ERC Advanced Grant 884281“ Synapse -Build”给V.H.),Deutsche Forschungsgemeinschaft(DFG,德国研究基金会;研究单位Synabs HA6386/9-2和HA6386/10-2 to S.H.;德国卓越策略 - Exc- 2049 - 390688087 to V.H.; Neuronex2/ha2686/19-1 to V.H.;研究单位Synabs GE2519/8-2和GE2519/9-2至C.G.; KFO 5001/KI1460/9-1,SPP 2205/KI1460/7-1和KI1460/5-1 to R.J.K.)。
DNAJC6 编码辅助蛋白,这是一种参与突触前末端网格蛋白介导的内吞作用 (CME) 的辅助伴侣蛋白。DNAJC6 的双等位基因突变会导致一种复杂的早发性神经退行性疾病,其特征是儿童时期迅速进展的帕金森病-肌张力障碍。该疾病通常与其他神经发育、神经和神经精神特征有关。目前,尚无针对这种疾病的疾病改良治疗方法,导致发病率高且过早死亡的风险高。为了研究儿童期发病的 DNAJC6 帕金森病的潜在疾病机制,我们从三名携带致病性功能丧失 DNAJC6 突变的患者体内生成了诱导性多能干细胞 (iPSC),随后开发了一种中脑多巴胺能神经元疾病模型。与年龄匹配和 CRISPR 校正的同源对照相比,神经元细胞模型显示出疾病特异性辅助蛋白缺乏以及突触小泡循环和稳态紊乱。我们还观察到影响腹侧中脑模式和神经元成熟的神经发育失调。为了探索病毒载体介导的基因治疗方法的可行性,用慢病毒 DNAJC6 基因转移处理 iPSC 衍生的神经元培养物,从而恢复辅助蛋白表达并挽救 CME。我们的患者衍生神经元模型提供了对辅助蛋白缺乏的分子机制的更深入见解,并为开发有针对性的精准治疗方法提供了强大的平台。
DNAJC6编码辅助蛋白,辅助蛋白是一种参与间突触前末端的网格蛋白介导的内吞作用(CME)的伴侣蛋白。双重突变引起复杂的早期神经退行性疾病,其特征是童年时期迅速进行性帕金森氏症。该疾病通常与其他NEU行,神经和神经精神病学特征有关。目前,对于这种情况,没有疾病改良的治疗方法,导致了明显的发病率和过早死亡的风险。为了研究儿童发作的DNAJC6帕金森氏症的潜在疾病机制,我们从三名具有致病功能DNAJC6突变的患者中产生了诱导的多能干细胞(IPSC),并随后开发了一种中脑多发性多巴胺多发性氨基疗法的疾病模型。与年龄匹配和CRISPR校正的同基因对照相比,神经元细胞模型揭示了疾病 - 特异性辅助蛋白缺乏以及突触囊泡回收和稳态的干扰。我们还观察到影响腹中脑模式和神经元成熟的神经发育失调。探索病毒载体介导的基因治疗方法的可行性,用len tiviral dnajc6基因转移治疗了IPSC衍生的神经元培养物,该基因恢复了辅助素的表达并营救了CME。我们的患者衍生的神经元模型提供了对辅助蛋白缺乏症的分子机制的更深入的见解,以及用于开发靶向精确治疗方法的强大平台。
高效的硬件-细胞通信对于理解细胞状态和控制细胞至关重要,是推进下一代人机界面的关键途径。在这里,我们提出了一种基于天然纤维素的节能神经装置,解决了传统接口通信硬件的局限性,特别是在材料生物相容性和生物信号匹配方面。基于纤维素的装置有效地模拟了生物突触连接的可塑性,并在低至 10 mV 的连续脉冲刺激下表现出学习行为。值得注意的是,它表现出卓越的数模转换性能,最低功耗为 0.1 nJ,有助于实现高效的界面生物信号匹配。此外,引入了一个分子级模型来阐明电刺激引起的纤维素分子内极性键的旋转。这种旋转改变了材料的相对介电常数,揭示了数模转换能力和类似神经的行为。此外,透明纤维素薄膜既可作为介电层,又可作为机械支撑,使设备能够在各种曲率下保持功能稳定性。这项研究中,基于纤维素的灵活且生物相容性的神经装置不仅可以有效地模拟突触,而且由于其低功耗信号转换,有望在脑机接口应用中实现有效的生物信号匹配。
Gabriele Chelini, 1,2,3,15 Hadi Mirzapourdelavar, 4,15 Peter Durning, 1 David Baidoe-Ansah, 4 Manveen K. Sethi, 5 Sinead M. O'Donovan, 6 Torsten Klengel, 2,7,8 Luigi Balasco, 3 Cristina Berciu, 1 Anne Boyer-Boiteau, 1 Robert McCullumsmith, 6 Kerry J. Ressler, 2,9,10 Joseph Zaia, 5,11 Yuri Bozzi, 3,12,16 Alexander Dityatev, 4,13,14,16 and Sabina Berretta 1,2,9,16,17, * 1 Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA 2 Department of Psychiatry,哈佛医学院,马萨诸塞州波士顿,马萨诸塞州02215,美国3思维/脑科学中心,特伦托大学,罗韦雷托大学38068意大利特伦托4分子神经塑性小组,德国神经退行性疾病中心,玛格德堡39120萨克萨尼 - 阿纳尔特的Magdeburg 39120 saxony-anhalt for Bilesy and Boiloligy and Specterriesity sepsectrial sepsectrial sepsectrialsion,波士顿大学医学院,马萨诸塞州波士顿,美国02118,美国6认知失调研究实验室,托莱多大学,托莱多,俄亥俄州托莱多,俄亥俄州43606,美国7转化分子基因组学实验室,麦克莱恩医院,马萨诸塞州贝尔蒙特,马萨诸塞州02478美国,马萨诸塞州波士顿,美国102215,美国10恐惧实验室神经生物学,麦克莱恩医院,马萨诸塞州贝尔蒙特,马萨诸塞州02478,美国11生物信息学计划,波士顿大学,波士顿,马萨诸塞州,马萨诸塞州02215,美国12 CNR神经科学学院PISA PISA,PISA,56124 PISA,56124 PISA,56124 PISA,ITALY 13 MADICLY FIRECRING 3.911德国萨克森 - 安哈尔特(Saxony-Anhalt)14行为脑科学中心,奥托·冯·格里克大学(Otto von Guericke University),玛格德堡(Magdeburg)39106德国萨克森 - 安哈尔特(Saxony-Anhalt),德国15这些作者同样贡献了16个高级作者17高级作者17铅接触 *信函 *s.berretta@mclearemclean.harvard.harvard.harvard.harvard.ulhttps:/ed.uh httpps://do./goi.erg/10.10.10.10.10.16.16.16.16.16.16.16.166
授予/奖励号:U19AG032438;国家老化研究所;阿尔茨海默氏症协会,赠款/奖励号:SG-20-690363-DIAN LATAM;德国神经退行性疾病中心;劳尔·卡雷(Raul Carrea)神经研究所;痴呆症的研发赠款;日本医学研发机构;韩国痴呆研究中心,赠款/奖励号:HU21C0066;西班牙卫生研究院卡洛斯三世;加拿大卫生研究所;加拿大神经退行性和衰老联盟,大脑加拿大基金会; BMBF-德国研究和教育部,赠款/奖励号:(FKZ,FKZ161L0214B,FKZ161L0214CCLINSPECT-M);德国研究基金会在慕尼黑系统神经病学框架内的德国卓越策略(Synergy),赠款/奖励号:exc2145Synergy -ID390857198
授予/奖励号:U19AG032438;国家老化研究所;阿尔茨海默氏症协会,赠款/奖励号:SG-20-690363-DIAN LATAM;德国神经退行性疾病中心;劳尔·卡雷(Raul Carrea)神经研究所;痴呆症的研发赠款;日本医学研发机构;韩国痴呆研究中心,赠款/奖励号:HU21C0066;西班牙卫生研究院卡洛斯三世;加拿大卫生研究所;加拿大神经退行性和衰老联盟,大脑加拿大基金会; BMBF-德国研究和教育部,赠款/奖励号:(FKZ,FKZ161L0214B,FKZ161L0214CCLINSPECT-M);德国研究基金会在慕尼黑系统神经病学框架内的德国卓越策略(Synergy),赠款/奖励号:exc2145Synergy -ID390857198
图 1 有机光电突触器件 . (a) 人类视网膜和大脑系统示意图 ; (b) 储池计算结构 ; (c) 提拉法制备有机薄膜示意图 ; (d) C 8 -BTBT 薄膜的光学显微镜图像 ( 标尺 : 100 μm); (e) PDIF-CN 2 薄膜的光学显微镜图像 ( 标尺 : 100 μm); (f) C 8 -BTBT 薄膜的 AFM 图像 ( 标 尺 : 1.6 μm); (g) PDIF-CN 2 薄膜的 AFM 图像 ( 标尺 : 1.6 μm); (h) 具有非对称金属电极的有机光电突触晶体管器件结构 ; (i) 器件 配置为光感知型突触 ; (j) 器件配置为计算型晶体管 ( 网络版彩图 ) Figure 1 Organic optoelectronic synaptic devices. (a) The schematic diagram of human retina and brain system. (b) The architecture of a reservoir computing. (c) The preparation of organic thin films by dip coating method. (d) The optical microscope image of C 8 -BTBT film. Scale bar: 100 μm. (e) The optical microscope image of PDIF-CN 2 film. Scale bar: 100 μm. (f) The AFM image of C 8 -BTBT film. Scale bar: 1.6 μm. (g) The AFM image of PDIF-CN 2 film. Scale bar: 1.6 μm. (h) The schematic diagram of organic optoelectronic synaptic transistor with asymmetric metal electrodes. (i) The device is configured as a light-aware synapse. (j) The device is configured as a computational transistor (color online).
神经退行性疾病是全球残疾的主要原因,帕金森氏病(PD)是增长最快的神经系统疾病。在2019年,全球估计表明,有超过850万人患有PD的人。与衰老紧密相连,预计到2040年将翻一番,对整个公共卫生系统和社会造成了很大的压力(https://www.who.int/news-news-roos-rooo m/fact-seets/fact-sheets/fact-sheets/delets/parkinson-disease)。迄今为止,没有血液检查,脑扫描或其他测定方法可以用作PD的确定诊断测试,目前的诊断方法主要依赖于运动症状和神经影像学的专家临床评估[1]。不幸的是,到诊断时,该疾病已经发展到一个相对先进的阶段,在本质中,大约60%的多巴胺能神经元在不可逆地丢失。在此阶段,延迟疾病进展可能为时已晚。因此,迫切需要在早期阶段检测PD的正交分子诊断方法。pd在病理上以蛋白质聚集体在受影响的神经元中的积累,主要由α-突触核蛋白(αS)组成[2,3]。αS的低聚物,而不是神经淀粉样蛋白包含物,被认为是毒性获得的实际致病罪魁祸首,改变了细胞骨架结构,膜通透性,膜流入,钙涌入,活性氧,活性氧,突触触发和神经元兴奋性[4,5]。这导致了与可溶性单体αs不良的交叉反应,这在CSF中的确更为丰富[4,14,15]。有证据表明,与非PD对照相比,PD患者的脑脊液(CSF)中αS低聚物的升高升高,表明它们在该生物FLUID中的水平可以用作PD的生物标志物,为诊断提供了机会[6-8]。然而,我们缺乏对αs低聚物结构的知识,以及它们的短暂性,异位和动态性质,使他们的跟踪和定量成为一项具有挑战性的任务。αs的抗体的产生和使用已成为首选选项,作为诊断和治疗目的的特定元素,例如抑制蛋白质聚集[9]。因此,在早期研究中,CSF中的αS聚集体和其他生物学流体(如血浆或血清)的检测依赖于诸如ELISA [10-12]或CLIA [13]等免疫测定的检测,其抗体通常针对αs s s s s s s s s s s s s s s s s s s s s。因此,这种方法显示出很大的可变性和有限的可靠性[16]。还采用了一些其他已建立的技术来检测有毒的低聚物,例如免疫组织化学,接近连接测定,基于Luminex的测定法,这也需要抗体[17,18]。同样,最近的策略同样依赖于将可用的抗体纳入具有不同感应构型(光学,电化学等)的不同生物传感器原型中。所有这些最终都可能遭受与使用这些受体相同的缺点。基于DNA的适体[19]最近为αs的低聚形式产生了另一种生物受体[20],尽管它们也显示出对Aβ1-40低聚物的识别。超敏感蛋白扩增测定法的最新进展,例如蛋白质不满意的环状扩增(PMCA)和实时Qua King诱导的转化率(RT-QUIC),该转化率(RT-QUIC)最初是针对人类疾病疾病的诊断,已显示出可吸引蛋白质聚集的有希望的结果,该蛋白质与患者的识别和分流相关[7] [7] [7] [7] [7]。但是,它们在常规DI不可知论中的临床实施中也表现出重大局限性。首先,不可能知道哪种是在反应中放大的特定αS物种,因此,分子生物标志物在
在C.892C> T(P.ARG298TRP)上,转录阻遏核与伏隔核核的错义突变在染色体19上导致严重的神经发育延迟(Schoch等,2017)。为了建模这种疾病,我们用同源突变(NACC1 +/R284W)设计了第一个小鼠模型,并检查了E17.5到8个月的小鼠。两个性别的体重增加,癫痫样排放量延迟,并改变了皮质脑电图,行为癫痫发作和明显的后肢紧握的功率谱分布;女性在一个开放式场上显示thigmotaxis。在皮质中,NACC1长同工型(含有突变)从3个月增加到6个月,而短的同工型(在人类中不存在,在小鼠中缺乏AAR284),从产后日开始稳步上升(p)7。核NaCC1免疫反应性在皮质锥体神经元和含有中间神经元的Parval-bumin的核NACC1免疫反应性升高,而在星形胶质细胞或寡头胶质细胞核中不增加。星形胶质细胞过程中的神经胶质纯酸性蛋白质染色减少。P14突变小鼠皮层的 RNA-SEQ揭示了1,000多种差异表达的基因(DEGS)。 神经胶质文字被下调并上调突触基因。 来自上调DEG的顶级基因本体术语与结合后和离子通道功能有关,而下调的DEG富含与代谢功能,线粒体和核糖的术语相关的术语。 突触蛋白的水平已更改,但突触接触的数量和长度在3个月时没有改变。 纯合性恶化了一些表型,包括产后存活,体重增加延迟和核NACC1的增加。RNA-SEQ揭示了1,000多种差异表达的基因(DEGS)。神经胶质文字被下调并上调突触基因。来自上调DEG的顶级基因本体术语与结合后和离子通道功能有关,而下调的DEG富含与代谢功能,线粒体和核糖的术语相关的术语。突触蛋白的水平已更改,但突触接触的数量和长度在3个月时没有改变。纯合性恶化了一些表型,包括产后存活,体重增加延迟和核NACC1的增加。该小鼠模型模拟了一种罕见的自闭症形式,对于评估病理生理学和治疗干预靶标的是必不可少的。