和非结构化数据。[1,2] 在大脑中,信息储存在突触中,突触中有一个裂缝连接两个神经细胞(神经元)。 当输入刺激到达前神经元时,神经递质会从前神经元分泌出来,与后神经元上的受体结合,并调节离子传输通道(图 1a)。[3] 离子通过通道的动态通过激活/停用离子通透性通道的形成(即电导更新)在增强/减弱突触权重方面起着至关重要的作用。[3] 根据突触前刺激,突触权重会暂时维持或持续数分钟、数小时甚至更长时间,并可充当记忆状态。 开发一种通过类似离子的动力学更新电导的人工突触将非常接近地模拟生物突触的行为,并最终可以模拟各种生物神经操作。漂移忆阻器已经成功模拟了具有长期增强 (LTP) 和长期抑制 (LTD) 特性的电导更新,但本质上是随机的 [4] 并且需要额外的扩散元件来模拟离子动力学。[5] 3 端器件结构(例如晶体管)可以调节离子,因此是人工突触的有希望的候选者。[6–13] 电解质门控晶体管无需额外电路即可控制离子。[6,7] 然而,实现电解质门控晶体管的长期可塑性一直具有挑战性,主要是因为器件不稳定性(例如,接触处的寄生电化学反应引起)。[6–8] 铁电场效应晶体管 (FeFET) 提供了一种出色的器件架构,通过控制铁电栅极的极化来编程/擦除非易失性多电导状态,从而控制突触权重。 [9] 铁电栅极已用于调节 FeFET 的电导率,FeFET 采用各种半导体作为沟道材料,包括氧化铟镓锌 (IGZO) [9–11] 、二维材料 [12,13] 和聚合物。[42] 然而,用缺乏离子的半导体材料模拟离子动力学几乎是不可能实现的。因此,需要一种能够传导离子并保持其电子结构的沟道材料。金属卤化物钙钛矿半导体因其独特的离子-电子混合导电特性,是用于人工突触的有前途的材料。[14–16] 高迁移率、大扩散长度和长载流子寿命等显著的电子导电特性使得
突触核酸是神经退行性疾病,其特征在于含有lewy体的α-突触核蛋白的积累。泛素化是一种关键的翻译后修饰,已被公认为是α-突触核蛋白的细胞动力学的关键调节剂,影响其降解,聚集和相关的神经毒性。本综述对当前对α-突触核蛋白泛素化的理解及其在突触核苷的发病机理中的作用,特别是在帕金森氏病的背景下。我们探索了负责α-突触核蛋白泛素化的分子机制,重点是主要通过内体溶酶体途径发生的E3连接酶和去渗透过程中涉及的降解过程中的作用。审查进一步讨论了这些机制的失调如何有助于α-核蛋白聚集和LB形成,并为将来研究α-突触核蛋白泛素化的作用提供了建议。理解这些过程可能会阐明潜在的治疗途径,这些途径可以调节α-突触核蛋白泛素化,以减轻其在突触核酸病变中的病理影响。
了解突触核素蛋白在体外和细胞中如何形成淀粉样蛋白如何对了解疾病至关重要。先前的研究表明,α-突触核蛋白的P1区(残基36-42)控制淀粉样蛋白的形成。我们在这里报告了在两个患有肌萎缩性侧面硬化症的个体中发现的γ-突触蛋白(γSyn)(Met38至Ile)的P1区域中的单个核苷酸多态性。两个个体在同一基因(glu110 to val)中都有第二个多态性,通常在普通人群中发现。我们表明,ILE38-含有γ静态形式的淀粉样蛋白在体外快速淀粉样蛋白,而Met38并未聚集成淀粉样蛋白,而Val110具有保护性,从而减慢了聚集。结果突出了P1序列在蛋白质淀粉样蛋白倾向之间平衡的关键作用。
这篇早期版本的文章已被同行评审和接受,但尚未通过组成和复制过程。最终版本的样式或格式可能会略有不同,并且将包含指向任何扩展数据的链接。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2024年9月8日发布。 https://doi.org/10.1101/2024.09.09.06.611614 doi:Biorxiv Preprint
人脑既不是约翰·洛克所说的没有任何预先存在的先天结构的“白板”——用现代人工智能语言来说,也不是完全由经验指导的未分化神经元的随机网络——也不是完全由基因决定的、不可逆转的硬连线神经元结构。它也不是由简单但非常流行的深度学习人工网络所代表的。人脑的 850 亿到 1000 亿个神经元及其突触连接经过数百万年的进化而来,每个大脑都经过近 15 年的出生后发育而形成,具有我们目前任何计算机都无法比拟的原始组织。它是高度可变、内在丰富的连接性和一套特定于物种的、由基因决定的规则之间的独特妥协,这些规则明确地使我们的大脑成为智人的大脑。
正电子发射断层扫描(PET)与放射性示踪剂结合与突触囊泡糖蛋白2 a(SV2A)的结合,可以量化活着的人脑突触密度。评估突触密度损失的区域分布和严重程度将有助于我们对神经退行性萎缩之前的病理过程的理解。In this systematic review, we provide a discussion of in vivo SV2A PET imaging research for quantitative assessment of synaptic density in various dementia conditions: amnestic Mild Cognitive Impairment and Alzheimer ' s disease, Frontotemporal dementia, Progressive supranuclear palsy and Corticobasal degeneration, Parkinson ' s disease and Dementia with Lewy bodies, Huntington ' s疾病和脊椎没共济典礼。我们讨论了有关群体差异和临床认知相关性的主要发现,并探索SV2A PET与病理学的其他标志之间的关系。此外,我们谈到了健康衰老和放射性示意剂验证研究结果中的突触密度。在2018年至2023年之间在PubMed和Embase上确定了研究;最后一次于2023年7月3日搜索。总共包括36项研究,包括正常老化,21个临床研究和10项验证研究的5个研究。提取的研究特征是参与者的细节,方法论方面和关键发现。总而言之,关于体内SV2A PET的小但不断增长的文献揭示了各种神经退行性疾病之间突触密度损失的不同空间模式,这些模式与认知功能相关,支持SV2A PET成像的潜在作用,以进行不同的诊断。SV2A PET成像显示出对神经退行性疾病的病因的新见解,并作为突触密度还原的生物标志物的巨大希望。提出了针对未来突触密度研究的新方向,包括(a)临床前痴呆症患者同类群中的纵向成像,(b)突触密度损失到其他病情逻辑过程中的多模式映射,以及(c)监测治疗反应并在临床试验中评估药物效率。
神经退行性疾病是全球残疾的主要原因,帕金森氏病(PD)是增长最快的神经系统疾病。在2019年,全球估计表明,有超过850万人患有PD的人。与衰老紧密相连,预计到2040年将翻一番,对整个公共卫生系统和社会造成了很大的压力(https://www.who.int/news-news-roos-rooo m/fact-seets/fact-sheets/fact-sheets/delets/parkinson-disease)。迄今为止,没有血液检查,脑扫描或其他测定方法可以用作PD的确定诊断测试,目前的诊断方法主要依赖于运动症状和神经影像学的专家临床评估[1]。不幸的是,到诊断时,该疾病已经发展到一个相对先进的阶段,在本质中,大约60%的多巴胺能神经元在不可逆地丢失。在此阶段,延迟疾病进展可能为时已晚。因此,迫切需要在早期阶段检测PD的正交分子诊断方法。pd在病理上以蛋白质聚集体在受影响的神经元中的积累,主要由α-突触核蛋白(αS)组成[2,3]。αS的低聚物,而不是神经淀粉样蛋白包含物,被认为是毒性获得的实际致病罪魁祸首,改变了细胞骨架结构,膜通透性,膜流入,钙涌入,活性氧,活性氧,突触触发和神经元兴奋性[4,5]。这导致了与可溶性单体αs不良的交叉反应,这在CSF中的确更为丰富[4,14,15]。有证据表明,与非PD对照相比,PD患者的脑脊液(CSF)中αS低聚物的升高升高,表明它们在该生物FLUID中的水平可以用作PD的生物标志物,为诊断提供了机会[6-8]。然而,我们缺乏对αs低聚物结构的知识,以及它们的短暂性,异位和动态性质,使他们的跟踪和定量成为一项具有挑战性的任务。αs的抗体的产生和使用已成为首选选项,作为诊断和治疗目的的特定元素,例如抑制蛋白质聚集[9]。因此,在早期研究中,CSF中的αS聚集体和其他生物学流体(如血浆或血清)的检测依赖于诸如ELISA [10-12]或CLIA [13]等免疫测定的检测,其抗体通常针对αs s s s s s s s s s s s s s s s s s s s s。因此,这种方法显示出很大的可变性和有限的可靠性[16]。还采用了一些其他已建立的技术来检测有毒的低聚物,例如免疫组织化学,接近连接测定,基于Luminex的测定法,这也需要抗体[17,18]。同样,最近的策略同样依赖于将可用的抗体纳入具有不同感应构型(光学,电化学等)的不同生物传感器原型中。所有这些最终都可能遭受与使用这些受体相同的缺点。基于DNA的适体[19]最近为αs的低聚形式产生了另一种生物受体[20],尽管它们也显示出对Aβ1-40低聚物的识别。超敏感蛋白扩增测定法的最新进展,例如蛋白质不满意的环状扩增(PMCA)和实时Qua King诱导的转化率(RT-QUIC),该转化率(RT-QUIC)最初是针对人类疾病疾病的诊断,已显示出可吸引蛋白质聚集的有希望的结果,该蛋白质与患者的识别和分流相关[7] [7] [7] [7] [7]。但是,它们在常规DI不可知论中的临床实施中也表现出重大局限性。首先,不可能知道哪种是在反应中放大的特定αS物种,因此,分子生物标志物在
了解突触功能和神经回路动力学如何受到调节是神经科学的基石,因为这些过程对于信息传递、记忆形成和对环境变化的适应性反应至关重要。它们提供了对大脑如何处理信息、适应经验和对伤害做出反应的见解,例如通过学习中的突触可塑性、创伤后的神经再生和对环境变化做出反应的自适应电路重塑等机制。这些机制对于理解精神和神经系统疾病的病理生理学也至关重要。虽然已经取得了重大进展,例如高分辨率成像技术的开发和关键分子调节剂的识别,但对突触特性和神经回路在时间和空间维度上的精确调节仍然了解不足。解决这些挑战对于揭示大脑可塑性背后的分子机制和推进神经和精神疾病的新治疗方法至关重要。本研究主题重点关注调节突触功能和神经回路动力学的时空分子机制。它汇集了旨在弥补现有知识空白的各种研究。通过深入研究突触特性的分子基础及其动态变化,该研究主题提供了对突触功能调节和电路可塑性的重要见解,其更广泛的目标是增进我们对大脑可塑性及其对神经系统疾病的影响的理解。
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 23 日发布。;https://doi.org/10.1101/2025.01.23.634521 doi:bioRxiv 预印本