摘要——本文开发了一个基于 FPT.AI 的文本转语音 (TTS) 应用程序,可将越南语文本转换为口语。该应用程序支持 Django for Python 开发,形式为一个交互式网站,通过其应用程序编程接口 (API) 连接到 FPT.AI 服务器。该应用程序支持将文本转换为七种不同的越南语。七种声音中有四种通常用于在单组操作中转换多达 500 个字符,而其他几种则支持 400 个字符。根据获得的结果,第一次转换时间需要 10 秒才能将 400 个字符的文本转换为语音,而接下来几次,给定相同的文本,转换时间不到 1.8 秒。这适用于所有声音。
摘要:基于运动的脑机接口 (BCI) 很大程度上依赖于运动意图的自动识别。它们还允许患有运动障碍的患者与外部设备进行通信。提取和选择判别特征通常会增加计算机的复杂性,这是自动发现运动意图的问题之一。这项研究介绍了一种利用脑电图数据自动对二类和三类运动意图情况进行分类的新方法。在建议的技术中,原始脑电图输入直接应用于卷积神经网络 (CNN),而无需提取或选择特征。根据先前的研究,这是一种复杂的方法。建议的网络设计包括十个卷积层,后面是两个完全连接的层。由于其准确性高,建议的方法可用于 BCI 应用。
隐私国际希望在保留版权的同时,尽可能广泛地传播其作品。隐私国际拥有开放获取政策,任何人都可以免费在线访问其内容。任何人都可以以任何格式下载、保存、执行或分发此作品,包括翻译,无需书面许可。这受知识共享许可契约条款的约束:署名-非商业-禁止演绎作品 2.0 英国:英格兰和威尔士。其主要条件是:
隐私国际希望在保留版权的同时,尽可能广泛地传播其作品。隐私国际拥有开放获取政策,任何人都可以免费在线访问其内容。任何人都可以以任何格式下载、保存、执行或分发此作品,包括翻译,无需书面许可。这受知识共享许可契约条款的约束:署名-非商业-禁止演绎作品 2.0 英国:英格兰和威尔士。其主要条件是:
情绪的反映有两种,包括外部反应和内部反应:外部反应包括人的面部表情、手势或言语等;内部反应包括皮肤电反应、心率、血压、呼吸频率、脑电图(EEG)、脑电图(EOG)(Yu et al., 2019)、脑磁图(MEG)(Christian et al., 2014)。从神经科学的角度(Lotfiand Akbarzadeh-T., 2014)发现,大脑皮层的主要区域与人的情绪密切相关(Britton et al., 2006; Etkin et al., 2011; Lindquist and Barrett, 2012),这启发我们通过在头皮上放置脑电电极来收集脑电信号,记录大脑的神经活动,从而识别人的情绪。脑电信号蕴含着情绪信息,近年来在情绪识别领域得到了广泛的应用(Soroush et al.,2017;Sulthan et al.,2018;Alarcao and Fonseca,2019)。在传统的脑电情绪识别过程中,特征提取是至关重要的步骤。如图1所示,在对脑电信号进行预处理后,通常需要从原始脑电信号中提取特征,然后输入到网络进行分类识别(Duan et al.,2013;Chen et al.,2021;Ma et al.,2021)。Duan等(2013)提出了五频带的差分熵(DE)特征,并利用DE特征获得了满意的分类结果。Li et al. (2019) 利用短时傅里叶变换提取时频特征,计算 theta、alpha、beta、gamma 波段的功率谱密度 (PSD) 特征,并使用 LSTM 进行情绪判别,取得了显著的分类结果。马等 (2021) 提出了一种甲虫天线搜索 (BAS) 算法,该算法在三个不同波段和六个通道中提取三个不同的特征,并采用 SVM 分类器进行分类。与传统 SVM 方法相比,BAS-SVM 方法的分类准确率提高了 12.89%。近年来,深度学习方法被广泛应用于情绪识别 (Jia et al.,2020a;Li et al.,2020;Zhou et al.,2021)。宋等 (2021) (2018) 根据电极位置设计 DE 特征,并使用图卷积神经网络 (GCNN) 作为分类器。张等 (2019) 创新性地将从脑电数据集中提取的 DE 特征与从面部表情数据集中提取的特征相结合,构建了时空循环神经网络 (STRNN) 用于情绪识别。李等 (2018) 提出了一种双半球域对抗神经网络 (BiDANN),以 DE 作为输入特征,在 SEED 数据集上进行了受试者相关和受试者独立的实验,取得了相对最佳的性能。郝等 (2021) 提出了一种提取 PSD 特征作为输入的轻量级卷积神经网络,并在 DEAP 数据集上进行了实验,分别取得了 82.33 和 75 的成绩。Valance 和 Arousal 分别为 46%。Chen 等人 (2021) 提出了一种集成胶囊卷积神经网络 (CapsNet),该网络使用小波包变换 (WPT) 进行特征提取。平均
• 制定概念说明,指导数字化气候合作工作组 – 欧洲复兴开发银行、联合国气候变化框架公约和联合国开发计划署向世界银行提供 1-2 页的说明,描述相关工作 – 世界银行将其整合为概念说明 • 根据概念说明制定工作计划 – 节奏:前 2-3 个月每 2 周开会一次,然后改为每月开会 – 参与者 > 工作组成员确定其组织中的其他成员,定期或临时参加工作组会议 > 世界银行/欧洲复兴开发银行确定任何其他有兴趣参与 D4C 合作的多边开发银行 > 工作组讨论任何其他机构的参与(例如GS、GCC、Verra、其他标准、IETA 的数字工作组代表)
当真空做出决定时,效率的机会就消失了。以大量研究分配。您为特定试验包装哪些DP?一个利益相关者可能希望以最接近的到期日期分配批次,而另一个利益相关者可能想要更长的到期,以避免套件到期的可能性。每个利益相关者都试图最大化单个KPI,但是如果没有有关生产和试用供应的信息,则无法确定赞助商的最佳全球解决方案。失去了这样的机会。还有另一种方式。端到端优化涉及分解筒仓并为整个临床试验供应链带来可见性,以实现跨部门的比对。它允许更准确,更有效地计划试验,减少浪费,释放制造资源,并使新试验能够更快地启动 - 所有这些都不会影响患者的安全性。
目标:脑电图 (EEG) 和肌电图 (EMG) 是两种非侵入性生物信号,广泛应用于人机界面 (HMI) 技术(EEG-HMI 和 EMG-HMI 范式),用于肢体残疾人的康复。成功将 EEG 和 EMG 信号解码为相应的控制命令是康复过程中的关键步骤。最近,提出了几种基于卷积神经网络 (CNN) 的架构,将原始时间序列(EEG 和 EMG 信号)直接映射到决策空间(用户的预期动作)。由于 CNN 是端到端学习算法,因此有意义的特征提取和分类过程是同时进行的。然而,这些网络是为学习给定生物信号的预期特征而定制的。从今以后,这些算法的含义通常仅限于单个 HMI 范式。在这项工作中,我们解决了这样一个问题:我们能否构建一个能够从不同的 HMI 范式中学习不同特征并仍能成功对其进行分类的单一架构。方法:在这项工作中,我们引入了一个称为 ConTraNet 的单一混合模型,该模型基于 CNN 和 Transformer 架构,对 EEG-HMI 和 EMG-HMI 范式同样有用。ConTraNet 使用 CNN 模块在模型中引入归纳偏差并学习局部依赖关系,而 Transformer 模块使用自注意机制来学习信号中的长距离或全局依赖关系,这对于 EEG 和 EMG 信号的分类至关重要。主要结果:我们在三个公开可用的数据集(BCI 竞赛 IV 数据集 2b、Physionet MI-EEG 数据集、Mendeley sEMG 数据集)上评估并将 ConTraNet 与最新方法进行了比较,这三个数据集属于 EEG-HMI 和 EMG-HMI 范式。ConTraNet 在所有不同类别任务(2 类、3 类、4 类和 10 类解码任务)中均优于其同行。意义:大多数 HMI 研究引入了针对其预期生物信号特征量身定制的算法,并在仅属于单一范式的数据集上验证其结果。相反,我们引入了 ConTraNet,并在两个不同的 HMI 范式上验证了结果,这两个范式包含 2、3、4 和 10 个类的数据。此外,ConTraNet 的泛化质量对于这两个范式都同样好,这表明 ConTraNet 能够从不同的 HMI 范式中学习不同的特征,并且与当前最先进的算法相比具有良好的泛化能力。
不同职业群体工人的心理工作量(MWL)是不安全行为的主要和直接因素,这可能会导致严重的事故。估计MWL的新技术之一是基于脑电图信号的大脑计算机接口(BCI),这被视为认知状态的黄金标准。但是,涉及手工脑电图功能的估计系统是耗时的,不适合实时申请。这项研究的目的是提出一个最终的BCI框架以进行MWL估计。首先,提出了一种新的自动数据预处理方法,以消除无人干扰的人工制品。然后,一种名为EEG-TNET的新神经网络结构旨在从原始EEG中提取时间和频率信息。此外,进行了两种类型的实验和消融研究,以证明该模型的有效性。在主题依赖性实验中,双任务估计的估计准确性(无任务与任务)和三任任务估计(LO vs. MI与HI)分别达到99.82和99.21%。相反,在受试者无关的实验中,不同任务的准确性达到82.78和66.83%。此外,消融研究证明,预处理方法和网络结构对估计MWL具有显着贡献。所提出的方法在没有任何人类干预的情况下很方便,并且胜过其他相关研究,这成为降低人为因素风险的有效方法。