Loading...
机构名称:
¥ 1.0

情绪的反映有两种,包括外部反应和内部反应:外部反应包括人的面部表情、手势或言语等;内部反应包括皮肤电反应、心率、血压、呼吸频率、脑电图(EEG)、脑电图(EOG)(Yu et al., 2019)、脑磁图(MEG)(Christian et al., 2014)。从神经科学的角度(Lotfiand Akbarzadeh-T., 2014)发现,大脑皮层的主要区域与人的情绪密切相关(Britton et al., 2006; Etkin et al., 2011; Lindquist and Barrett, 2012),这启发我们通过在头皮上放置脑电电极来收集脑电信号,记录大脑的神经活动,从而识别人的情绪。脑电信号蕴含着情绪信息,近年来在情绪识别领域得到了广泛的应用(Soroush et al.,2017;Sulthan et al.,2018;Alarcao and Fonseca,2019)。在传统的脑电情绪识别过程中,特征提取是至关重要的步骤。如图1所示,在对脑电信号进行预处理后,通常需要从原始脑电信号中提取特征,然后输入到网络进行分类识别(Duan et al.,2013;Chen et al.,2021;Ma et al.,2021)。Duan等(2013)提出了五频带的差分熵(DE)特征,并利用DE特征获得了满意的分类结果。Li et al. (2019) 利用短时傅里叶变换提取时频特征,计算 theta、alpha、beta、gamma 波段的功率谱密度 (PSD) 特征,并使用 LSTM 进行情绪判别,取得了显著的分类结果。马等 (2021) 提出了一种甲虫天线搜索 (BAS) 算法,该算法在三个不同波段和六个通道中提取三个不同的特征,并采用 SVM 分类器进行分类。与传统 SVM 方法相比,BAS-SVM 方法的分类准确率提高了 12.89%。近年来,深度学习方法被广泛应用于情绪识别 (Jia et al.,2020a;Li et al.,2020;Zhou et al.,2021)。宋等 (2021) (2018) 根据电极位置设计 DE 特征,并使用图卷积神经网络 (GCNN) 作为分类器。张等 (2019) 创新性地将从脑电数据集中提取的 DE 特征与从面部表情数据集中提取的特征相结合,构建了时空循环神经网络 (STRNN) 用于情绪识别。李等 (2018) 提出了一种双半球域对抗神经网络 (BiDANN),以 DE 作为输入特征,在 SEED 数据集上进行了受试者相关和受试者独立的实验,取得了相对最佳的性能。郝等 (2021) 提出了一种提取 PSD 特征作为输入的轻量级卷积神经网络,并在 DEAP 数据集上进行了实验,分别取得了 82.33 和 75 的成绩。Valance 和 Arousal 分别为 46%。Chen 等人 (2021) 提出了一种集成胶囊卷积神经网络 (CapsNet),该网络使用小波包变换 (WPT) 进行特征提取。平均

E2ENNet:用于情感脑机接口的端到端神经网络

E2ENNet:用于情感脑机接口的端到端神经网络PDF文件第1页

E2ENNet:用于情感脑机接口的端到端神经网络PDF文件第2页

E2ENNet:用于情感脑机接口的端到端神经网络PDF文件第3页

E2ENNet:用于情感脑机接口的端到端神经网络PDF文件第4页

E2ENNet:用于情感脑机接口的端到端神经网络PDF文件第5页

相关文件推荐

2022 年
¥3.0
2022 年
¥1.0
2020 年
¥2.0
2022 年
¥1.0
2022 年
¥6.0
2024 年
¥1.0