Haemonchus contortus是小型反刍动物中最致病的线虫,而驱虫抗性(AR)阻碍了其有效的控制。需要早期检测AR状态才能减少AR的选择,并且无法使用表型测试来实现。对于苯二唑唑(BZ),在同种型1β-微型蛋白基因中以单核苷酸多态性(SNP)为特征的AR相关等位基因的检测允许Stron Gyles的早期AR检测。在抗BZ的种群中已经描述了F200Y,F167Y,E198A和E198L多态性,区域之间的频率有明显变化。一种新型的数字PCR(DPCR)可以检测H. contortus中所有上述多态性。测定进行了验证。然后,分析了26个奥地利人和10个意大利绵羊农场的幼虫,并在农场一级合并。对于所有测定,证明了15份/μL电阻等位基因的检测极限和高度准确性,从而可以在大多数样品中检测1%的等位基因频率。在奥地利的样本中,在所有农场都检测到了F200y等位基因的频率升高。第一次在奥地利的H. tortus中发现了密码子167和密码子198中的多态性。在意大利样品中,电阻等位基因的频率仍然相对较低,但F200Y抗性等位基因可追溯。总而言之,我们首次开发了DPCR分析,该测定目标是针对H. contortus中与BZ抗性相关的所有相关性SNP。对AR开发的未来研究可能会受益于基于SNP的监视,其中包括所有相关性SNP的开发测定法。改进的监视将包括其他重要的,尽管病原体较少的线虫属。
摘要 通过聚合酶链式反应,可以从基因组 DNA 中酶促扩增单拷贝序列。通过使用两种不同摩尔量的扩增引物,只需一个步骤即可扩增单拷贝基因并产生所选链的过量单链 DNA,用于直接测序或用作杂交探针。此外,可以使用等位基因特异性寡核苷酸在扩增反应中或作为测序引物直接测序杂合子中的单个等位基因。通过使用这些方法,我们研究了 HLA-DQA 基因座的等位基因多样性及其与血清学定义的 HLA-DR 和 -DQ 类型的关联。该分析揭示了总共八个等位基因和三个额外的单倍型。该方法在筛查人类基因突变方面具有广泛的应用,并有助于将基因的酶促扩增与自动测序联系起来。
a N: 检测个体数;%amp: 从所有 37 个 SSR 的 N 列总数中扩增的样本百分比;NP: 每个种群检测到的等位基因数;PA: 每个种群的私有等位基因数;NE = 有效等位基因数(Nielsen、Tarpy & Reeve,2003);H: MLG 多样性的 Shannon-Weiner 指数(Shannon,2001;随着物种的丰富度和均匀度而增加);λ:辛普森指数(Simpson,1949);IA 关联指数评估基因座是否连锁(Kamvar 等人,2014,2015);rd:关联指数考虑了采样的基因座数量,因此偏差较小(Kamvar 等人,2014,2015); AR:等位基因丰富度(36 个基因拷贝中预期的等位基因数量;韩国:CK040);µ HE:Nei 的无偏基因多样性,根据样本量进行了校正(Nei,1978);HO = 观察到的杂合性;FI = 固定指数 - 个体近亲繁殖系数。I:Shannon 的信息指数(Shannon,2001)。通过对数据集进行 10,000 次排列来评估显著性。*** 在 10,000 次排列时 p < .001。
精准基因编辑旨在生成单核苷酸修饰以纠正或模拟人类疾病。然而,由于效率低下和实用性有限,使用 CRIPSR-Cas9 等核酸酶进行精准编辑的成功率有限。在这里,我们在人类诱导多能干细胞 (iPS) 中建立了荧光 DNA 修复检测,以可视化和量化单等位基因和双等位基因靶向期间 DNA 修复结果的频率。我们发现,通过确定的培养条件和小分子调节 DNA 修复和细胞周期阶段可协同增强同源定向修复 (HDR) 的频率。值得注意的是,在纯合报告细胞中进行靶向可产生高水平的编辑,其中绝大多数为双等位基因 HDR 结果。然后,我们利用高效的双等位基因 HDR 和混合 ssODN 修复模板来产生杂合突变。协同基因编辑是产生人类 iPS 细胞中精确基因修饰的有效策略。
多倍体在禾本科植物中很常见,对传统育种提出了挑战。基因组编辑技术绕过了杂交和自交,能够在一代中对多个基因拷贝进行有针对性的修改,同时保持许多多倍体基因组的杂合背景。巴哈草(Paspalum notatum Flügge ́;2 n =4 x =40)是一种无融合生殖的四倍体 C4 物种,在美国东南部广泛种植,作为肉牛生产和公用事业草坪的饲料。叶绿素生物合成基因镁螯合酶(MgCh)被选为在四倍体巴哈草中建立基因组编辑的快速读出目标。含有 sgRNA、Cas9 和 npt II 的载体通过基因枪法递送到愈伤组织培养物中。通过基于 PCR 的检测和 DNA 测序对编辑植物进行了表征,并观察到高达 99% 的 Illumina 读数的诱变频率。野生型 (WT) 巴哈草的测序显示,MgCh 的序列变异水平很高,这可能是因为存在至少两个拷贝,可能包含八种不同的等位基因,包括假基因。MgCh 突变体表现出明显的叶绿素消耗,叶片绿度降低了 82%。两种品系显示出随时间推移的编辑进展,这与体细胞编辑有关。获得了嵌合 MgCh 编辑事件的无融合生殖后代,并允许在一系列叶绿素消耗表型中识别出统一编辑的后代植物。高度编辑的突变体的 Sanger 测序显示 WT 等位基因的频率升高,可能是由于频繁的同源定向修复 (HDR)。据我们所知,这些实验是首次报道将基因组编辑应用于多年生暖季草皮或牧草。该技术将加速巴哈草品种的开发。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 8 月 23 日发布。;https://doi.org/10.1101/2022.08.22.504807 doi:bioRxiv preprint
dehorning是实际去除角以保护动物和人类受伤的过程,但是该过程是昂贵,不愉快的,并且面对面对越来越多的公众审查。在遗传上占主导地位的投票(无角)的遗传选择是消除除去的需求的长期解决方案。然而,由于澳大利亚婆罗门公牛的投票数量有限,北澳大利亚牛肉人口仍然主要是有角的。最近证明了使用基因编辑来产生高遗传归档的牛的潜力。为了进一步探讨该概念,这项研究模拟了通过常规繁殖或基因编辑(每年的种子托牛公牛/年的最高1%或10%),将民意测验的等位基因渗入了热情适应的澳大利亚牛肉人群中,以对3种民意测验的配对方案,并将结果与基本的遗传选择(日本选择Index Index Index,$ Japox,$ japox)进行比较,而不是20岁。基线场景并没有显着降低20年的角等位基因频率(80%),但导致遗传增益的最快率之一(每年8.00美元)。与基线相比,传统的繁殖场景优先用于育种,无论其遗传优点如何,都显着降低了20年的角等位基因频率(30%)(30%),但导致遗传增益的速度明显较慢($ 6.70/年/年,P≤0.0.005)。需要独家使用纯合调查的公牛的交配方案,导致20年的角等位基因频率(8%),但这种常规的繁殖场景导致遗传增益率最慢(每年5.50美元)。在每种常规育种方案中添加了基因编辑,在每年的种子托牛牛犊中的最高1%或10%导致遗传增益的速度明显更快(最高$ 8.10/年,P≤0.05)。总体而言,我们的研究表明,由于澳大利亚婆罗门公牛的数量有限,对被调查的强烈选择压力对于在此
识别有希望的种质库加入,这可能会带来具有重大影响或有益的定量变化的单个等位基因,通常类似于在干草堆中寻找针头。实际上,由于高成本,适应性,受限的设施资源和时间压力,几乎永远不可能表现出很大一部分可用的种质。需要对可用配件进行明智的预筛选。此外,当确定具有假定等位基因的特性性状的加入时,尚未完成任务,因为必须将有益的变化整合到精英种质中。在简单的遗传结构(例如鉴定出的主要效应基因)的情况下,可以通过标记辅助反向交叉(MABC)渗入新颖的等位基因,也可以通过基因编辑来接近。然而,需要进行先前的发现研究来识别与表型变异相关的遗传变异。特别是基因编辑需要有关因果变异的非常精确的信息。与MABC中应用可能相关的性状相关标记的可用性可能是基因编辑方法不足的。这项研究是资源和耗时的,并且在与精英材料的遗传背景结合使用时,由于等位基因的影响改变了,因此具有固有的验证实验的固有风险。处理定量变化时,不需要专用的映射实验。但是,将定量变化带入精英背景并使育种者可以接受的产品更加困难。陆地带有许多有害和下等位基因,这些等位基因可以迅速破坏数十年来繁殖者艰苦地建立的积极联系。降低的农艺表现使育种社区不愿在其精英育种计划中包括这种种质。
目标2:使用475个基因面板评估了分析性能,该基因面板包括在已知等位基因频率下具有广泛临床重要变体(SNV,INDELS和SVS)的FFPE病例中大量已知基因驱动因素。通过对FFPE细胞系颗粒的稀释研究,我们确定SNV的LOD为≥5%突变等位基因频率(MAF),Indels的MAF≥10%,SVS的肿瘤纯度≥20%(表1)。duoseq在跑步和运算符精确研究中均达到了> 98%的可重复性(数据未显示)。内部和LAB间的可重复性,并在可比等位基因频率下对事件进行了高度可重复的检测(表2中的数据)。 这些结果表明,杜塞克能够在实验室之间进行均匀的肿瘤分析。内部和LAB间的可重复性,并在可比等位基因频率下对事件进行了高度可重复的检测(表2中的数据)。这些结果表明,杜塞克能够在实验室之间进行均匀的肿瘤分析。
本文件定义了确定和验证分析阈值和随机阈值的各自最低要求。此类阈值有助于确保所获数据的可靠性,同时清楚地传达在下游解释过程中评估数据的假设。实验室的目标是始终如一地生成可靠且可重复的等位基因数据名称,并通过内部验证数据和实验室协议确定何时可能发生等位基因丢失。如果实验室在其数据分析方法中对案件中是否检测到峰值做出二元判定,则分析阈值是必需的。同样,如果实验室在其数据分析方法中对案件中等位基因丢失的可能性做出二元判定,则随机阈值也是必需的。每当应用阈值时,都有可能发生分类错误。任何分析阈值的内在预期是,不可重复的噪声会产生一些峰值,这些峰值由于超出阈值而被错误地归类为等位基因,并且一些真正的等位基因将无法检测到,因为它们产生的峰值低于阈值。任何随机阈值的内在预期是,在确定是否可能发生等位基因丢失时会发生一些错误。当姊妹等位基因峰丢失并且第二个峰高于随机阈值时,一些杂合基因型将被错误地归类为纯合。相反,一些纯合基因型将被错误地归类为潜在杂合,因为单个峰低于随机阈值。根据相关经验数据的统计分析确定阈值的优势在于,可以估算出给定阈值水平下这些可能错误的相对风险。在设定阈值时,实验室必须采用基于统计的方法来确定这些事件中有多少比例可用于法医案件的分析。该标准的草案由法医科学领域委员会组织的人类法医生物学小组委员会制定。关键词:分析阈值、随机阈值、DNA、验证、信号、伪影、噪音