• 在本实施例中,使用以 CO 2 为工作流体的文丘里泵将金属氧化物粉末(如铁锈、Fe 3 O 4 )吸入系统。 • 泵将铁锈粉末和 CO 2 推进系统的反应器,在那里铁锈中的铁与化合物中的氧分离。 • 铁以正离子的形式离开反应器;这些离子随后被电磁场加速,并通过永磁场从气流中转移。 • 然后铁离子被带负电的法拉第杯接收,在那里离子被中和并以纯铁金属的形式储存。 • 然后这种金属可以用作建筑或工业材料。 • 值得注意的是,该过程适用于任何离子键合的金属氧化物化合物,包括稀土元素。
免责声明 本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不做任何明示或暗示的保证,也不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
胡梦云,a,b,c 李芳芳,a,b 石申成,a,b 乔宇,a,b 葛金曼,d 李小军,d 曾和平 a,b,e,f,* a 华东师范大学,精密光谱国家重点实验室,上海,中国 b 华东师范大学重庆学院,重庆市精密光学重点实验室,重庆,中国 c 上海理工大学,光电与计算机工程学院,光学仪器与系统教育部工程研究中心,上海市现代光学系统重点实验室,上海,中国 d 中国空间技术研究院(西安),空间微波国家重点实验室,陕西省西安市 e 上海量子科学研究中心,上海,中国 f 重庆市脑与智能研究院,广阳湾实验室,重庆,中国
近包装组件中的抽象等离子体纳米晶体表现出集体光学的分辨和由于耦合而引起的强烈浓缩电场。从分离的纳米晶体的局部表面等离子体共振(LSPR)到组件的光谱红移反映了耦合强度,这取决于纳米晶体特征和组装结构。将这些转移与纳米晶体间距相关的缩放定律可用于系统地描述等离激子耦合,可用于预先峰值移动材料设计。在这里,我们建立了一种统一的缩放关系,该关系可以考虑到掺杂剂不仅对LSPR频率而且对纳米晶体内游离电子的分布的影响来说明金属氧化等离子纳米晶体的独特特性。,我们提出了一个重新固定的等离子体标尺,并针对存在掺杂剂的耗竭层进行了调整,以描述当组装成近距离填充的超晶格时,胶体依赖性二氧化物氧化物氧化物氧化物纳米晶体的特性移位。该框架可用于指导等离子材料的设计,以根据纳米晶体构建块的合成属性实现特定的光学特性。
HPH 使用大振幅哨声器(即低于电子回旋频率的电磁波)产生能量为几十 eV(10-30 km/s,取决于推进剂选择)的等离子流。哨声器由固态开关电路以几十 kW 的功率驱动。直流线圈磁铁有助于哨声器的产生,额外的磁铁可使等离子体聚焦。
在金属中,可以通过可见的波长光激发荷载体,以形成振荡和费米水平附近的内映射,对应于电子的等离子体振荡。一旦激发,由于金属的有限程度,将等离子局部在界面上局部,形成局部的表面等离子体共振(LSPRS),或者沿延伸的界面作为表面等离子体plason Polaritons(spps)沿延伸界面。[1,2]等离子体的领域旨在精确地在纳米级的磁光,并具有有希望的应用,包括亚波伦长波导,[3,4]纳米antenennas,[5]超镜头,[6]亚波长度成像,[7] Nano-civillely,[7] Nano-civillery,[8,8,9]和生物体。[10]控制这种激发需要考虑使用的材料和所形成的几何形状。寻找可能充当等离子应用可行候选的新金属或掺杂的半导管仍然是一个重大问题。[11]在费米水平附近填充的状态贡献了能够对等离子体振荡进行的电子,而在费米水平以上的空状态则被内标转换填充。频带间的转变并不有助于等离子体的振荡,而通过光子吸收激发它们是一种损失机制。因此,完美的等离子金属将在费米水平附近的电子能够在材料中传播,并具有低标记损耗且无带间跃迁的材料。高电导率是一个有益的特征,因为它表明电子在材料中传播时,即由于诱导电子的电子 - 电子散射而导致的低损失。[1]但是,这不是一个足够的标准,因为弱电子 - 电子散射并不排除光线间过渡吸收的光的可能性,而不是令人兴奋的沿金属 - 介电界面传播电子模式。[12]
类型的人造功能材料用于水纯化,生物传感,光电塔克斯甚至抗病毒过滤。[7-10]人造物质中淀粉样蛋白原纤维的潜力可以通过形成各向异性组件的能力进一步富集。与许多其他类似棒状的胶体颗粒一样,淀粉样蛋白原纤维的水悬浮液可以自组装成具有远距离定向排序的相位,即由熵驱动的液晶(LCS)。[11-14]除了没有位置排序的常见列表外,原纤维的固有手性还导致纤维化相位,并通过控制原纤维的长度分布和限制,并通过控制原纤维的螺旋扭曲对齐。[15,16]这些有序的状态导致中曲科中原纤维组件的机械,流变和光学性质各向异性,但是,在官能材料的制造中,尚未充分利用这一充分的优势。[7,8]
摘要。窄带光进行是用于材料分析和传感的重要测量技术,例如非分散红外传感技术。已经探索了光活性材料工程和纳米光子过滤方案,以实现波长选择的光电检测,而大多数设备的响应性带宽大于操作波长的2%,从而限制了感知性能。在Au/Si Schottky纳米结中,通过实验证明了带宽小于0.2%的近红外照相检测。通过仔细尾随纳米结构中的吸收性和辐射损失,在1550 nm的波长下获得了光电响应的最小线宽。使用波纹的AU膜在芯片上实现了多个功能,包括窄带共振,用于传感和光电检测的光收集以及用于热电子发射的电极。受益于与原位光电传感信号和超核会共振的原位光电转换,通过简单的强度询问进行了独立的芯片生物传感,在Glucose解决方案的浓度下降至0.0047%,用于Glucose解决方案和150 ng ng ml for Rabbit Bitbit Igg。在现场传感,光谱,光谱成像等中应用的这种技术的有希望的潜力。
这项工作综述了文献,并提供了一维银和金纳米颗粒的光学特性的详细计算分析,重点是表面晶格共振(SLR),这些共振(SLR)在本地化的等离激子共振(LSPRS)中跨越纳米颗粒的跨度跨度时,它们会在nanopartiles中跨度散布,以使某些散布的跨度散布,以使某些跨度的跨度散布在跨度上,以使某些相互构想的跨度散布在跨度上。激发类型连贯耦合。组合基于偶联偶极近似,该偶极近似提供了几乎定量的描述这种类型的阵列的灭绝光谱,其中颗粒良好分离而不太大。这些计算用于确定与下极化模式相关的SLR的许多特征,该模式大多是光子本质上的,我们还研究了由LSPR响应所支配的上极性体,以及瑞利异常(RAS),以及对纯粹衍射激发的贡献。计算探讨了这些激发对入射波和极化向量相对于阵列轴的方向的敏感性,阵列间距和阵列中颗粒数的影响以及纳米颗粒半径和背景折射指标的效果。提供了确定蓝色和/或红色移位的物理机制的细节,因为提供了变化的结构参数,SLR对远场耦合很敏感,而LSPR在某些情况下也可能对近中间和中间田间相互作用敏感,在某些情况下与在Dye Molecule Molecule Cotregate中发现的效果相似。
电子邮件:stephane.calvez@laas.fr 简介 原子层沉积 (ALD) 纳米厚的 Al 2 O 3 层或其他电介质层已被证实是一种有效的方法,可用于创建敏感材料封装层,防止其因周围大气中的水分和氧气含量而发生降解 [1,2]。另外,由氧气(分别是水)引起的半导体材料向绝缘体的腐蚀转变,称为干(湿)氧化,通常用于微电子和光子器件以及集成电路的制造,作为引入实现晶圆上光学路由 [3–6] 和/或电连接所需的电和/或光子限制的一种方式。特别是在硅光子器件制造中,后者的工艺通常涉及将硅层在高温或等离子体中暴露于水/氧气中,并通过厚度大于 100 nm 的 SiN x 掩模实现局部氧化保护 [3,4]。在此背景下,我们在此报告了使用 ALD 沉积的 Al 2 O 3 作为节省材料的氧化屏障以防止硅晶片的等离子诱导或高温热氧化的能力的研究。样品制备通过热 ALD 在硅晶片上沉积具有纳米厚度的 Al 2 O 3 薄膜。低压热 ALD 沉积由重复循环组成,每个循环包括 300 ms 的三甲胺铝 (TMA) 脉冲,然后在 N 2 下进行 2800 ms 的吹扫,150 ms 的水蒸气脉冲,以及在 N 2 下进行 6700 ms 的第二次吹扫。这里测试了两个沉积温度,90°C 和 150°C。使用可变角度光谱椭圆偏振法(使用 Accurion EP4 系统)测量所得层厚度。图 1 显示了 Al 2 O 3 厚度随沉积循环次数变化的记录。在 0 个循环时,测量到的厚度对应于天然氧化硅(测量到约 2 纳米)。在 15 个沉积循环之前,成核开始以异质生长(见图 1 插图)。超过 15 个循环后,沉积厚度以每循环生长率 (GPC) 0.19 纳米/循环线性增加,并且与沉积温度的依赖性较弱。随后使用紫外光刻和湿法蚀刻对 Al 2 O 3 涂层样品进行图案化,以获得具有 Al 2 O 3 保护和未保护硅区域的样品。使用稀磷酸(去离子水/H 3 PO 4 (37%) 1/1 溶液)在精确的 67°C 温度下进行层蚀刻,蚀刻速率为 30 纳米/分钟。分别用水和丙酮进行冲洗和清洁。测试了两种类型的氧化:干热氧化和等离子氧化。干热氧化方案包括在 5L/min 的 O 2 流量下从 30°C 开始线性升温(8.2°C/min),然后在 9L/min 的 O 2 流量下以 1000°C 进行恒温步骤,然后在 5L/min 的 O 2 流量下以 -16.3°C/min 的温度衰减。低压 O 2 等离子体氧化在 Sentech Si-500 设备中进行,使用 30 分钟的重复处理,其中样品受到 O 2 等离子体处理,RF 功率为 800W,基板温度保持在 100°C 以下。在这两种情况下,通过成像光谱椭圆偏振法测量处理过的样品的保护区和未保护区的氧化厚度。图 2 左侧显示,如果 Al 2 O 3 厚度大于 ~9 nm(45 个循环),则干氧化不会进行,而对于更薄的覆盖层,干氧化会减少。SEM 横截面(如图 2 中的插图所示)进一步证实了这一观察结果。类似地,观察到等离子体氧化导致氧化物生长遵循平方根定律的时间依赖性(Deal 和 Grove 模型 [7]),但对于(30 次循环)Al 2 O 3 涂层样品部分,其氧化速率降低。