电子邮件:stephane.calvez@laas.fr 简介 原子层沉积 (ALD) 纳米厚的 Al 2 O 3 层或其他电介质层已被证实是一种有效的方法,可用于创建敏感材料封装层,防止其因周围大气中的水分和氧气含量而发生降解 [1,2]。另外,由氧气(分别是水)引起的半导体材料向绝缘体的腐蚀转变,称为干(湿)氧化,通常用于微电子和光子器件以及集成电路的制造,作为引入实现晶圆上光学路由 [3–6] 和/或电连接所需的电和/或光子限制的一种方式。特别是在硅光子器件制造中,后者的工艺通常涉及将硅层在高温或等离子体中暴露于水/氧气中,并通过厚度大于 100 nm 的 SiN x 掩模实现局部氧化保护 [3,4]。在此背景下,我们在此报告了使用 ALD 沉积的 Al 2 O 3 作为节省材料的氧化屏障以防止硅晶片的等离子诱导或高温热氧化的能力的研究。样品制备通过热 ALD 在硅晶片上沉积具有纳米厚度的 Al 2 O 3 薄膜。低压热 ALD 沉积由重复循环组成,每个循环包括 300 ms 的三甲胺铝 (TMA) 脉冲,然后在 N 2 下进行 2800 ms 的吹扫,150 ms 的水蒸气脉冲,以及在 N 2 下进行 6700 ms 的第二次吹扫。这里测试了两个沉积温度,90°C 和 150°C。使用可变角度光谱椭圆偏振法(使用 Accurion EP4 系统)测量所得层厚度。图 1 显示了 Al 2 O 3 厚度随沉积循环次数变化的记录。在 0 个循环时,测量到的厚度对应于天然氧化硅(测量到约 2 纳米)。在 15 个沉积循环之前,成核开始以异质生长(见图 1 插图)。超过 15 个循环后,沉积厚度以每循环生长率 (GPC) 0.19 纳米/循环线性增加,并且与沉积温度的依赖性较弱。随后使用紫外光刻和湿法蚀刻对 Al 2 O 3 涂层样品进行图案化,以获得具有 Al 2 O 3 保护和未保护硅区域的样品。使用稀磷酸(去离子水/H 3 PO 4 (37%) 1/1 溶液)在精确的 67°C 温度下进行层蚀刻,蚀刻速率为 30 纳米/分钟。分别用水和丙酮进行冲洗和清洁。测试了两种类型的氧化:干热氧化和等离子氧化。干热氧化方案包括在 5L/min 的 O 2 流量下从 30°C 开始线性升温(8.2°C/min),然后在 9L/min 的 O 2 流量下以 1000°C 进行恒温步骤,然后在 5L/min 的 O 2 流量下以 -16.3°C/min 的温度衰减。低压 O 2 等离子体氧化在 Sentech Si-500 设备中进行,使用 30 分钟的重复处理,其中样品受到 O 2 等离子体处理,RF 功率为 800W,基板温度保持在 100°C 以下。在这两种情况下,通过成像光谱椭圆偏振法测量处理过的样品的保护区和未保护区的氧化厚度。图 2 左侧显示,如果 Al 2 O 3 厚度大于 ~9 nm(45 个循环),则干氧化不会进行,而对于更薄的覆盖层,干氧化会减少。SEM 横截面(如图 2 中的插图所示)进一步证实了这一观察结果。类似地,观察到等离子体氧化导致氧化物生长遵循平方根定律的时间依赖性(Deal 和 Grove 模型 [7]),但对于(30 次循环)Al 2 O 3 涂层样品部分,其氧化速率降低。
1。引入等离子体中的电子速度分布函数(VDF)很少是麦克斯韦人。1,2完全离子的空间等离子体和弱离子的气体排放等离子体有几个原因。在第一种情况下,磁化电子通常部分限制在血浆产生的电场上,受到波粒相互作用和湍流,这些相互作用和湍流在带电颗粒之间的库仑相互作用上占主导地位。在第二种情况下,外部电场和中性等离子体物种的碰撞会在大多数低温有限的等离子体中产生特殊的非平衡条件。在本文中,我们讨论了在等离子体中形成弱耦合电子基的典型情况,并显示了电子动力学模拟的示例。
针对儿科患者的无焦虑治疗方法 Richa Wadhawan 1 , Manishi Tiwari 2 , Rashmi Kumari 3 , Madhur Nitin Mutha 4 , Priyam Pratim Saikia 5 , Amisha Nair 6 1 教授,口腔医学、诊断与放射学系,PDM 牙科学院与研究中心,巴哈杜尔加尔,哈里亚纳邦,印度;2 研究生,儿童和预防牙科系,Maharana Pratap 牙科学院与研究中心,瓜廖尔,中央邦,印度;3 高级讲师,儿童和预防牙科系,Awadh 牙科学院与医院,贾坎德邦,贾姆谢德布尔,印度;4 研究生,儿童和预防牙科系,RKDF 牙科学院与研究中心,博帕尔,中央邦,印度; 5 研究生,儿童和预防牙科系,马哈拉纳普拉塔普牙科学院与研究中心,瓜廖尔,中央邦,印度;6 实习生,马哈拉纳普拉塔普牙科学院与研究中心,瓜廖尔,中央邦,印度 摘要:牙科卫生技术的最新进展引入了变革性工具,旨在显着增强口腔健康,特别注重儿科护理。在这些创新中,等离子炬牙刷作为一种革命性的设备脱颖而出,为儿童带来了非凡的潜在益处。本综述探讨了等离子炬牙刷的显著优势,强调了其在口腔护理中的有效性、在减轻儿科患者牙科焦虑方面的关键作用以及对用户体验的整体影响。利用等离子技术的力量,等离子炬牙刷在改善牙菌斑去除、减少细菌负荷和促进牙周健康方面表现出色,同时只需要儿童付出最少的体力。其尖端功能,包括非侵入性等离子治疗和先进的清洁机制,不仅使刷牙更有效,而且对于经常对牙科手术心存恐惧的儿童来说,也是一种更加愉快和无压力的体验。通过综合临床研究和用户反馈的证据,本评论对该设备对儿童牙齿健康和用户满意度的影响进行了全面评估。等离子炬牙刷标志着牙科技术的重大飞跃,提供了一种新颖的口腔卫生方法,克服了传统刷牙方法带来的许多挑战。在牙科治疗经常引起不适和焦虑的领域,尤其是在年轻患者中,这项创新技术通过减少疼痛和组织损伤提供了至关重要的解决方案,从而增强了儿童的整体牙科护理体验。关键词:冷激活等离子、无焦虑牙科、儿童牙科、等离子刷、等离子喷射装置
根据Noether定理,物理系统中的对称性与保守数量交织在一起。这些对称性通常决定系统拓扑,这会随着维度的增加而变得更加复杂。准晶体既没有翻译也不具有全局旋转对称性,但它们本质上居住在一个高维空间中,在该空间中,对称性浮出水面。在这里,我们发现了拓扑电荷向量,该拓扑载体在四个维度(4D)中,这些维度(4D)控制了2D准晶体的真实空间拓扑,并揭示了其固有的保护定律。我们证明了对五边形等离子体式准乳头中拓扑的控制,并由相分辨和时间域近场显微镜绘制,表明它们的时间进化不断地调节其独特的4D拓扑的2D投影。我们的工作提供了一种实验探测4D及以上拓扑物理学的热力学特性的途径。t
摘要简介细菌性阴道病(BV)的病因(一种与生物膜相关的阴道感染)仍然未知。流行病学数据表明它是性传播的。BV的特征是乳酸产生乳酸杆菌的丧失以及兼性和严格的厌氧菌细菌的增加。Gardnerella spp以95% - 100%的病例存在;在体外,已发现阴道加德纳(Gardnerella)阴道比其他BV-相关细菌(BVAB)更具毒性。然而,阴道菌在正常的阴道微生物群中发现了G. g。g。g。g。g。定植不足以进行BV发育。我们假设Gardnerella spp启动BV生物膜形成,但是入射的BV(IBV)需要将其他关键的BVAB(IE,Prevotella bivia,Fannehessea daginae)掺入将多因素群体转录组改变的生物膜中。这项研究将研究IBV之前的微生物事件的序列。方法和分析本研究将在阿拉巴马州伯明翰的一家性健康研究诊所中招募150名18-45岁阴道菌群的女性,没有性传播感染。妇女每天会自我收集两次阴道标本,长达60天。16S rRNA基因测序,用于Gardnerella spp,P。bivia和F. f. f。f。f。f。divcr以及范围16S rRNA基因QPCR的QPCR将在每天的两次阴道标本中进行,来自IBV女性的阴道女性两次(至少连续2个日子)和对照组的差异(至少是连续2个)和竞赛,并具有可比性的年龄,并且对竞赛的差异,并在竞赛中进行了差异,并在竞赛中进行了反对,并且竞赛,竞赛,竞赛,竞赛,竞赛,竞赛,竞赛,竞赛,竞赛,并在竞赛中,并且竞赛,竞赛和竞赛,竞赛,并在竞赛中,竞赛,竞赛,并竞争。 Microbiota研究IBV女性随着时间的流逝,阴道菌群的变化。参与者将每天对包括性活动在内的多种因素完成日记。道德和传播该协议得到了阿拉巴马大学伯明翰机构审查委员会(IRB-300004547)的批准,并将获得所有参与者的书面知情同意。调查结果将在科学会议上提出,并在同行评审期刊上发表,并将其传播给感兴趣的社区的提供者和患者。
摘要我们报告了单原子镍催化剂在难治性等离子硝酸钛(TIN)纳米材料上使用湿合成方法在可见光光照射下支持的沉积。锡纳米颗粒有效吸收可见光,以产生光激发的电子和孔。光激发电子减少镍前体,以将Ni原子沉积在锡纳米颗粒表面上。产生的热孔被甲醇清除。我们通过改变光强度,光照时间和金属前体浓度来研究锡纳米颗粒上的NI沉积。这些研究结合了光沉积法是由热电子驱动的,并帮助我们找到了单个原子沉积的最佳合成条件。我们使用高角度的环形暗场扫描透射电子显微镜(HAADF-STEM),能量分散X射线光谱(EDX)和X射线光电子光谱(XPS)表征了纳米催化剂。我们使用密度功能理论(DFT)计算来预测Ni原子在TIN上的有利沉积位点和聚集能。TIN的表面缺陷位点最有利于单镍原子沉积。有趣的是,锡天然表面氧化物层上的氧位点也与单个Ni原子表现出很强的结合。等离子体增强的合成方法可以促进单个原子催化剂的光沉积在具有质量特性的广泛金属载体上。
摘要:锌及其合金因具有增强的生物相容性而被视为制备可生物降解医疗器械(支架和骨固定螺钉)的有前途的材料。这些材料必须实现机械性能和腐蚀性能的理想组合,而合金化或热机械过程可能会影响这些性能。本文介绍了不同机械合金化 (MA) 参数对 Zn-1Mg 粉末成分的影响。同时,本研究描述了 MA 制备对 Zn-6Mg 和 Zn-16Mg 合金的影响。采用放电等离子烧结 (SPS) 法压实选定的粉末。随后,研究了它们的微观结构并测试了它们的力学性能。整个过程导致晶粒显着细化(Zn-1Mg 为 629 ± 274 nm)并形成新的金属间相(Mg 2 Zn 11 、MgZn 2 )。烧结样品的压缩性能主要与合金元素的浓度有关,浓度增加导致强度提高但延展性变差。根据所得结果,Zn-1Mg合金的性能最好。
摘要:采用放电等离子烧结技术制备了不同成分的AlN-MgO复合材料,系统研究了成分对其微观结构、热性能和力学性能的影响。AlN-MgO复合材料中MgO的成分控制在20~80wt%。结果表明,烧结过程中未发生相变,MgO和AlN晶格内形成了不同的固溶体。AlN-MgO复合材料的晶粒结构比烧结的纯AlN和MgO样品更细。透射电子显微镜分析表明,复合材料中既存在富氧、低密度的晶界,也存在含有尖晶石相的干净边界。 100 o C时烧结的纯AlN样品表现出最高的热导率(53.2 W/mK)和最低的热膨胀系数(4.47×10 -6 /K);而烧结的纯MgO样品表现出中等的热导率(39.7 W/mK)和较高的热膨胀系数(13.05×10 -6 /K)。但随着AlN-MgO复合材料中MgO含量的增加,AlN-MgO复合材料的热导率从33.3降低到14.9 W/mK,而热膨胀系数普遍增加,随着MgO含量的增加从6.49×10 -6增加到10.73×10 -6 /K。MgO含量为60 wt%的复合材料整体表现出最好的力学性能。因此,AlN-MgO复合材料的成分和微观结构对其热性能和力学性能具有决定性的影响。
摘要 几十年来,PECVD(“等离子体增强化学气相沉积”)工艺已成为在多种类型的基材(包括复杂形状)上合成有机或无机薄膜的最方便和通用的方法之一。因此,PECVD 如今已用于从微电子电路制造到光学/光子学、生物技术、能源、智能纺织品等许多应用领域。然而,由于该工艺的复杂性(包括大量气相和表面反应),制造针对特定应用的定制材料仍然是该领域的一大挑战,显然,只有通过对薄膜形成所涉及的化学和物理现象的基本理解才能掌握该技术。在此背景下,本基础论文的目的是与读者分享我们对 PECVD 层形成基本原理的认识和理解,考虑到不同反应途径的共存,可以通过控制气相和/或生长表面的能量耗散来定制这些反应途径。我们证明了控制 PECVD 薄膜功能特性的关键参数是相似的,无论其性质是无机的还是有机的(等离子体聚合物),从而支持对 PECVD 工艺的统一描述。气相工艺和薄膜行为的几个具体示例说明了我们的愿景。为了完善本文档,我们还讨论了 PECVD 工艺发展的当前和未来趋势,并提供了使用这种强大而多功能技术的重要工业应用示例。
手性分子的准确检测,分类和分离是推进药物和生物分子创新的关键。设计的手性光提出了一种有希望的途径,以增强光与物质之间的相互作用,从而提供一种无创,高分辨率和具有成本效益的方法来区分对映异构体。在这里,我们提出了一个基于ACHIRAL等离子体系统的纳米结构平台,用于表面增强红外吸收吸收诱导的Vi-Brational圆形二色性(VCD)。该平台可以对对映体混合物的精确度量,分化和量化,包括浓度和对映体的多余确定。与常规的VCD光谱技术相比,我们的手性对映异构体的检测灵敏度高13个数量级的检测敏感性,这是相应的路径长度和浓度。该刺激性等离子体系统的可调光谱特性促进了多种手性化合物的检测。平台的简单性,可调节性和出色的灵敏度具有在药物设计,药物和生物应用中分类的巨大潜力。