基于表面增强的拉曼s骨(SERS)分子检测的可靠性。因此,在热点处的3D散装溶液中,无限分子的精确放置仍然是获得超敏感和可再现的无标记 - 无分子检测的目标。已经提出了一些用于定位靶标分子的方法,包括使用生物感受器[4-6]增强分子相互作用并进行电动作用。[7-9]受体分子为靶分子提供了特定的结合位点。但是,由于受体和靶分子之间的结合事件高度依赖于靶分子在散装溶液中的分子扩散,因此使用这种被动扩散过程很难实现实时检测。对于基于溶液的检测系统,电动驱动被认为是一种有前途的方法,可以通过电溶剂在热点区域浓缩带电的小痣。[7-9]但是,由于纳米级热点与大型大型杂菌质量之间的大小不匹配,因此这些常规的SERS平台不能很好地适应对呼吸道病毒的无标记和快速检测。尽管可以通过电泳吸引≈100nm的病毒粒子颗粒,但由于其结构上的复杂性和较大的尺寸,它们可能不适合纳米级热点。
建议引用推荐引用XU,xiaohui;杜塔(Aveek); Khurgin,雅各布;魏,亚历山大; Shalaev,Vladimir M。;和Boltasseva,Alexandra,“ TIN @ Tio2 Core-Shell纳米颗粒作为等离子体增强的光敏剂:热电子注入的作用”(2020年)。化学系出版社。论文23。https://docs.lib.purdue.edu/chempubs/23
谐振非弹性X射线散射(RIX)是一种使用高度强烈和单色X射线的光子散射光谱技术,以探测感兴趣的材料的激发。通过在元素的谐振阈值中有选择地工作,RIX可以在能量摩托车空间中进行探测多种局部激发,集体激发或有序状态,例如D-D激发,镁,轨道,等离子,等离子,等离子,音子,电荷和电荷密度 - 密度 - 密度 - 密度波。
摘要 - 通过利用亚波长等离子设备来实现紧凑的光学整合电路,需要设计紧凑和有效的光子对等离激元模式转换器的设计。尤其是对于需要多个转换器的等离子多输入设备,例如逻辑门,可以在很大程度上通过光子波导将足迹构成,这应该在设计中考虑。在这项工作中,我们为应用多输入等离子体设备的应用模拟和基准五个Photonic to for等离子体模式转换器拓扑。我们的设计包括等离子波导的定向和末端耦合方案,以及线和插槽构造的Si光子波导。考虑到光子波导和等离子波导,总足迹以及模式转换效率之间的音高不匹配,我们优化了转换器的性能。
摘要 本研究获得了基于铁电磁 PbFe 1/2 Nb 1/2 O 3 粉末和铁氧体粉末(锌镍铁氧体,NiZnFeO 4 )的多铁性(铁电-铁磁)复合材料(PFN-铁氧体)。陶瓷 PFN-铁氧体复合材料由 90% 粉末 PFN 材料和 10% 粉末 NiZnFeO 4 铁氧体组成。陶瓷粉末采用传统工艺方法合成,采用粉末煅烧,而复合粉末的致密化(烧结)采用两种不同的方法进行:(1)自由烧结法(FS)和(2)放电等离子烧结(SPS)。对复合 PFN-铁氧体样品进行了热测试,包括直流电导率和介电性能。此外,还在室温下测试了复合材料样品的 XRD、SEM、EDS (能量色散谱) 和铁电性能 (磁滞回线)。在工作中,对用两种方法获得的 PFN-铁氧体复合材料样品的测量结果进行了比较。多铁性陶瓷复合材料的 X 射线检查证实了来自复合材料铁电 (PFN) 基质的强衍射峰以及由铁氧体组分引起的弱峰。同时,研究表明不存在其他不良相。这项研究的结果表明,通过两种不同的烧结技术 (自由烧结法和放电等离子烧结技术) 获得的陶瓷复合材料可以成为功能应用的有前途的材料,例如,用于磁场和电场传感器。
摘要。本文简要回顾了卫星和航天器的电力推进技术。电力推进器,也称为离子推进器或等离子推进器,与化学推进器相比,其推力较低,但由于能量与推进剂分离,因此可以实现较大的能量密度,因此在太空推进方面具有显著优势。尽管电力推进器的发展可以追溯到 20 世纪 60 年代,但由于航天器上可用功率的增加,该技术的潜力才刚刚开始得到充分发挥,最近出现的全电动通信卫星就证明了这一点。本文首先介绍了电力推进器的基本原理:动量守恒和理想火箭方程、比冲和比推力、性能指标以及与化学推进器的比较。随后,讨论了电源类型和特性对任务概况的影响。根据推力产生过程,等离子推进器通常分为三类:电热、静电和电磁装置。通过讨论电弧喷射推进器、MPD 推进器、脉冲等离子推进器、离子发动机以及霍尔推进器及其变体等长期存在的技术,介绍了这三个组以及相关的等离子放电和能量传输机制。随后讨论了更先进的概念和性能改进的新方法:磁屏蔽和无壁配置、负离子推进器和磁喷嘴等离子加速。最后,分析了各种替代推进剂方案,并研究了近期可能的研究路径。
a 电子和计算机技术系,卡塔赫纳理工大学,30202 卡塔赫纳,西班牙 b 马德里康普顿斯大学 Física Aplicada III 系,28040 马德里,西班牙 c 萨里大学离子束中心,吉尔福德 GU2 7XH,英国 d 研究所Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, 葡萄牙 e 南岸大学工程、科学和技术学院, 103 Borough Road, London SE1 0AA, United Kingdom
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要:最近通过自组装定义的纳米颗粒形成自支持的网络,所谓的Aerogels的宏观材料。以这类材料的有前途的特性动机,搜索通往前聚合的纳米颗粒的多功能路线进入这种超轻宏观材料已成为极大的兴趣。用多功能物的胶体纳米颗粒的过度涂料程序意味着从纳米颗粒中产生气凝胶,无论其大小,形状或性能如何,同时保留其原始特性。在此,我们报告了各种构件的表面修饰和组装:光致发光的纳米棒,磁性纳米球和等离激元纳米管,粒径在5到40 nm之间。用于涂层的聚合物是用1多二烷胺侧链修饰的聚(异丁基 - 甲基甲基酸酐)。聚合物的两亲性促进了水性介质中纳米晶体的稳定性。水凝胶是通过触发胶体稳定的溶液来制备的,水阳离子在聚合物壳的官能团之间充当接头。超临界干燥后,水凝胶成功地转化为具有高度多孔,开放结构的宏观气凝胶。由于非侵入性制备方法,构建块的纳米镜特性保留在整体气凝胶中,从而导致这些特性强大地传递到宏观上。关键字:纳米颗粒,气凝胶,聚合物涂层,相转换,多功能合成方法■简介开放的孔系统,聚合物涂层策略的普遍性以及网络的巨大可访问性使这些凝胶结构有望有希望的生物传感平台。用生物分子功能化聚合物壳可以使利用构建块的纳米镜头特性的可能性渗透到流化的探测,磁性感应感和等离激元驱动的热传感。
