近年来,石墨烯纳米材料因其优异的电学和光电性能而引起了人们的广泛关注。基于等离子工程的石墨烯刻蚀可获得原子级薄层和极其洁净的表面,是一个热点问题,具有极高的工业应用价值。残留的污染物具有较高的固有粗糙度,导致性能下降。通过表面清洁方法和自上而下光刻逐层等离子刻蚀可以去除杂质。最近,基于新型等离子技术的刻蚀不会造成损坏并确保其π键,这对导电性和其他特性起着关键作用。因此,本章介绍了纳米材料(如石墨烯)新型刻蚀技术的最新进展以及基于这些技术的新兴应用。
摘要:放电等离子烧结(SPS),也称为脉冲电流烧结(PECS)或场辅助烧结技术(FAST),是一种在中等单轴压力(最大 0.15 GPa)和高温(高达 2500 °C)下烧结粉末的技术。与传统工艺相比,它可以在更低的烧结温度和更短的加工时间内实现陶瓷或金属粉末的完全致密化,为纳米材料致密化开辟了新的可能性,因此在过去几年中得到了广泛的应用。最近,通过将 SPS 与高压(高达 ~10 GPa)结合起来,出现了新的机遇。目前,一个广阔的令人兴奋的学术研究领域正在使用高压 SPS(HP-SPS)来调节烧结的各种参数,如晶粒生长、结构稳定性和化学反应性,从而实现亚稳态或难烧结材料的完全致密化。本综述总结了 HP-SPS 对烧结多种先进功能材料的各种好处。它介绍了各种 HP-SPS 技术的最新研究成果,特别强调了它们的相关计量学及其获得的主要突出成果。最后,在最后一节中,本综述列出了一些关于当前挑战和未来方向的观点,HP-SPS 领域在未来几年可能会取得重大突破。
摘要:我们显然是第一次研究微纳米化等离激光激光的阈值条件,在H极化情况下,在其内部对称地放置在其内部的圆形量子激光。我们假设量子线是由非磁性增益材料制成的,其特征在复杂折射率的“主动”假想部分。激光综合等离激元效应的出现标志着当代光子学的重要趋势。在这里,石墨烯为贵金属提供了一种有希望的替代方法,因为它具有在红外线和Terahertz(THZ)光谱上维持等离子 - 孔龙天然表面波的能力。使用的创新方法是激光特征值问题(LEP),它是经典的电磁场边界值问题,适合于活性区域的存在。它是为交付特定于模式的发射频率而定制的,该发射频率纯粹是真实的,在阈值和活性区域的增益指数的值是使频率实现的必要条件。使用量子kubo形式主义表征石墨烯的电导率。,我们将所考虑的纳米剂的LEP减少到带状电流的超单向积分方程,并通过NyStrom-type方法对其进行离散。此方法是无网状的,并且在计算上是经济的。离散后,获得矩阵方程。所寻求的特定模式对{频率和阈值增益指数}对应于矩阵决定符的零。应注意,如果离散化顺序逐渐更大,则可以通过数学上确保与精确的LEP特征值的收敛性。识别和研究了两个模式的家族:量子线的模式,被石墨烯带的存在和条带的等离子体模式扰动。发现所有等离子体模式的频率和量子线的最低模式被发现通过改变石墨烯的化学潜力进行了充分的调整。用于等离子体模式频率和阈值的工程分析公式。我们认为,所提出的结果可用于创建单模可调微型和纳米层。
双眼立体视觉依赖于两个半球视网膜之间的成像差异,这对于在三维环境中获取图像信息至关重要。因此,与生物眼的结构和功能相似性的视网膜形态电子始终非常需要发展立体视觉感知系统。在这项工作中,开发了基于Ag-Tio 2纳米簇/藻酸钠纤维的半球光电磁带阵列,以实现双眼立体视觉。由等离子热效应引起的全光调制和Ag-Tio 2纳米群体中的光激发,以实现像素内图像传感和存储。广泛的视野(FOV)和空间角度检测是由于设备的排列和半球形几何形状的入射角依赖性特征而在实验上证明的。此外,通过构造两个视网膜形态的恢复阵列,已经实现了基于双眼差异的深度感知和运动检测。这项工作中证明的结果提供了一种有希望的策略,以开发全面控制的回忆录,并促进具有传感器内架构的双眼视觉系统的未来发展。
样品等离子清洁器 用于清洁和蚀刻气锁中的样品。减少样品表面污染可提高图像质量和分辨率 生成活性气相自由基,去除不需要的污染物。需要气锁。包括 • 等离子清洁器 Evactron Zephyr • MultiSEM 气锁的多端口 • 多端口适配器套件 • 集成在 ZEN 软件中的控制
要克服常规调节器的带宽限制,可以采用等离子设备。等离子调节剂已显示可运行高达500 GHz [8],因此是用于此类高宽宽应用的理想解决方案。最近通过微环谐振器调制器(MRR)[9]和高达363 GBIT/s的净数据速率(MACH-ZEHNDER调制器(MZM)[10])已被证明。这些等离子调节剂基于硅光子(SIPH)平台,因此可以无缝地集成到标准的SIPH过程中以进行整体整合。这有望通过共包装[11],启用小占地面积[12]和低驾驶电压[13]来进一步改进,这是400 Gbit/s tranceivers的理想候选者。然而,单个载体IM/DD演示仍缺少血浆以上的血浆以上。
然而,石墨烯设备物理学的一个重要结果是,有必要将石墨烯单层封装在两片绝缘二维材料六角型硝酸硼(HBN)之间,以实现理想的较高的运输特性。[27,28]此包封可确保在环境条件下进行化学稳定,因为石墨烯受到保护不受大气吸附物的保护。封装还可以确保原子上的石墨烯片,从而实现室温弹道传输。[27]因此,HBN中石墨烯的封装已迅速成为设备社区中的标准平台,并且很可能成为潜在的未来石墨烯设备行业中的主要平台。此外,扭曲的双层石墨烯的生长领域完全取决于HBN封装以生产扭曲的双层。石墨烯和HBN之间的强范德华吸引力是使石墨烯晶体一部分精确的角度堆叠到自身上的方法。[28,29]
培训该案。一旦计算出截短物体的确切极性i Z,5,10,16,23 25复杂的效果去极化因子就可以从与等效自由式球形相对应的eq S1中得出。在图S6中绘制了e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e s6 s6和具有代表性纵横比r = 0的截短颗粒。5、1、2、4和给定的t r值(主要文本中的truncation参数de ned)。对于粒子的形状不太接近全球(r>1。5),α由偏振电荷类似于偶极的模式主导。它们的效果去极化因子几乎是恒定接近共振的(请参阅图S6中的仪表板上的垂直线),它们的行为实际上是振荡器。
直到最近,等离子纳米颗粒的统治作用是否是充当电荷供体[16,17]或热源[14,18]的问题。现在,大多数作者都同意,根据反应,一种或另一种效果可能占主导地位。[19]例如,金色粒子上的双原性化合物的解离,特别是h 2 [1,20]和O 2,[21,22]的分解是通过能量电子的转移来确定的,而有机分子的碎片,而诸如diacumyl-peroxide的分解,例如,多氨基细胞的分解。尽管在理解这种解离反应方面取得了很多进展,但我们对等离子体驱动的多步键构型过程的理解仍处于起步阶段。在这些反应中,不同的反应步骤可能会从等离子体激发的存在中获利。作为一个突出的例子,许多
摘要:在本文中,我们在理论上和实验上都研究了双峰干涉传感器的敏感性,其中干涉发生在两个具有不同特性的等离子模式之间,在同一物理波导中传播。与众所周知的Mach- Zehnder干涉测定法(MZI)传感器相反,我们首次表明双峰传感器的灵敏度与传感面积长度无关。通过将理论应用于组成的铝(AL)等离子条纹波导的集成等离子双峰传感器来验证这一点。使用不同长度的等离子条带进行了数字模拟的一系列这种双峰传感器,证明了所有传感器变体的散装折射率(RI)敏感性,证实了理论上的结果。还通过芯片级RI传感实验对三个制造的SU-8/Al Bimodal传感器进行了芯片级RI传感实验,以50、75和100 µm的血浆传感长度进行了实验验证。发现获得的实验性RI敏感性分别非常接近,等于4464、4386和4362 nm/riU,这证实了感应长度对双峰传感器敏感性没有影响。上述结果减轻了设计和光损失约束,为更紧凑,更强大的传感器铺平了道路,可以在超短声感应长度下实现高灵敏度值。
