摘要:电感耦合等离子体反应离子刻蚀 (ICP-RIE) 是一种选择性干法刻蚀方法,用于各种半导体器件的制造技术。刻蚀用于形成非平面微结构 - 沟槽或台面结构,以及具有受控角度的倾斜侧壁。ICP-RIE 方法结合了高精加工精度和可重复性,非常适合刻蚀硬质材料,例如 SiC、GaN 或金刚石。本文回顾了碳化硅刻蚀 - 介绍了 ICP-RIE 方法的原理、SiC 刻蚀结果和 ICP-RIE 工艺的不良现象。本文包括 SEM 照片和从不同的 ICP-RIE 工艺获得的实验结果。首次报道了向 SF 6 等离子体中添加 O 2 以及 RIE 和 ICP 功率的变化对工艺中使用的 Cr 掩模的刻蚀速率和 SiC/Cr 刻蚀选择性的影响。 SiC 是一种极具吸引力的半导体,具有许多优异的性能,通过亚微米半导体加工技术的进步可以带来巨大的潜在利益。最近,人们对 SiC 产生了浓厚的兴趣,因为它在电力电子领域具有广泛的应用潜力,特别是在汽车、可再生能源和铁路运输领域。
未来的设备肯定需要较小的临界维度(CD)并包含新材料和结构。虽然考虑到某些结构和材料的自组装,但在可预见的将来,干燥的蚀刻将仍然是不断变形光刻特征的模式转移的主要方法。在某些情况下,新材料将被纳入传统半导体材料中形成的腔体中。在其他材料中,这些材料将需要干蚀刻,因此需要开发新的蚀刻过程。选择结构和材料的选择将受到可用的干蚀刻工艺和设备功能的很大影响。
重组人红细胞生蛋白(RHEPO)2和darbepoetin-alpha(DPO)3是通过刺激红细胞生产来治疗贫血的基于基因工程的蛋白质药物。这些代理人刺激红细胞生产的能力导致了人类和马运动员的使用和滥用,因此违反了公平竞争的规则,导致其分类为赛马业被禁止的物质。此外,继续对马的行政管理可能导致贫血。3尽管马的Rhepo对马的负面方面,但由于浓度非常低,因此难以识别和合法的识别和合法性的方法来识别和确认Rhepo/DPO的方法。样本收集通常仅在竞争后才获得,该样本在管理后可能超过72小时。RHEPO/DPO的测试进一步与通常发现药物的基质的复杂性 - 血浆和尿液相混淆。
近年来,能够引导细胞行为和形态的聚合物涂层引起了越来越多的关注。已知涂层特性(包括表面形态、表面结构和化学性质)会显著影响细胞粘附、定向、引导、分化、增殖和基因表达。[1–4] 此类涂层在生物传感器、生物芯片、药物输送装置、假体和植入物中也得到了有效应用。可以使用多种合成和天然来源的生物相容性聚合物。尽管合成聚合物在加工、稳定性和机械性能方面具有优势,但天然聚合物由于其生物活性、生物降解性和生物相容性而在许多应用中更受青睐。 [5– 6 ] 在天然聚合物中,壳聚糖是一种从几丁质中提取的线性多糖,由于其无毒、[7]可生物降解、[8]抗菌活性、[9]生物相容性[10]和免疫活性[11]等显著特性,已广泛应用于生物医学、环境和食品应用。此外,由于壳聚糖的可加工性,它可以设计成各种结构,包括薄膜、[12]膜、[13]微/纳米纤维、[14]绷带、[15]微/纳米颗粒[16]和水凝胶。[17]
表面等离子体共振(SPR)是开发传感器平台 - 用于临床诊断,药物发现,食物质量和环境监测应用的关键技术。虽然Prism耦合(Kretschmann)SPR仍然是实验室工作流动的“金色标准”,这是由于更轻松的制造,处理和通过PUT高较高,但其他配置的spr,例如光栅耦合SPR(GC-SPR)和Wave-Guide Mode等SPR尚未实现其技术潜力。这项工作评估了影响GC-SPR性能的技术方面,并回顾了此类平台制造的最新进展。原则上,GC-SPR涉及带有定期光栅的等离子金属纤维的照明,以通过基于差异的相位匹配来激发表面等离子体(SP)。然而,GC-SPR的实际性能受到通过自上而下的光刻技术产生的光栅结构的地形的影响。本综述讨论了在大规模上实现具有均匀特征和周期性的一致的等离子光栅的最新方法,并探讨了等离子体激活和底物材料的选择,以增强性能。该评论还提供了有关不同的GC-SPR测量结果的见解,并强调了机会,其潜在应用是具有转化能力的生物传感器。
这些是我关于等离子体物理学的讲座的注释,自2014年以来作为牛津大学MMATHPHYS/MSCMTP计划的一部分教授。第一部分包含有关等离子体动力学的讲座,这些讲座构成了“动力学理论”核心课程的一部分。血浆讲座旨在作为该主题概念和方法的总体介绍,以及中性气体动力学(由Paul Dellar教)和引人入胜的颗粒动力学(由James Binney教授,由Jean-Baptiste Fouvry和Chris Hamilton继承,然后是每次提供其自身的讲座。第二部分组装的更高级的部分涵盖了在2020年可怕的三位一体期间,在Covid-19锁定下,在可怕的三位一体学期中首次教授的材料。从这些笔记中提取的摘录也用于我在2017年和2023年的Ecole de physique de physique de physique de physique de ecole de ecole de ecole sessions的讲座中。第三部分是磁性水力动力学的介绍,它是我在2015 - 21年教授的“高级流体动力学”课程的一部分(Paul Dellar涵盖了该课程的另一部分,专门针对复杂的流液)。这些笔记源于两个早期课程:“高级等离子体理论”,在2008年在帝国学院教授,“磁水动力学和湍流”,在2005-06年在剑桥的数学第三课程中任教了三次。最后,第四部分致力于动力学和MHD的婚姻。这些年来,这些讲座已经吸收了很多材料,这并不是所有这些显然是一个好主意,至少在与该主题的第一次相遇时,教书或学习的确是一个好主意。它起源于2013年和2015年的Les Houches讲座(以及Mate kunz和我曾经计划写的KMHD的审查的未完成的草稿),自从Plamen Ivanov and It Dripra上 我已经在小字体中进行了一致的效果,以首次阅读的零件排版,尽管在初始博览会中可能会感到不必要的东西有时会在以后更加重要,技术和/或概念。 我将感谢学生,导师和同情者的任何反馈。我已经在小字体中进行了一致的效果,以首次阅读的零件排版,尽管在初始博览会中可能会感到不必要的东西有时会在以后更加重要,技术和/或概念。我将感谢学生,导师和同情者的任何反馈。
图2:a)沉积在银上的J-聚集膜的石版画区的暗场显微镜图像。该图案的设计包含圆形光漂白区域(CPA),直径范围为1至40 µm。相邻漂白区域之间的最小分离距离为20 µm,可以彼此隔离。样品中重复数十倍的模式,以测试实验结果的重复性。在40 µM CPA中,我们代表激光激发和视野。b)CPA的素描被聚焦激发的中心照亮。激光激发后,QD会因刺激模式在样品平面中传播而衰减。孵化的区域对应于激发发射器的体积,我们为模拟设定了非零的化学潜力。
摘要:电感耦合等离子体反应离子刻蚀 (ICP-RIE) 是一种选择性干法刻蚀方法,用于各种半导体器件的制造技术。刻蚀用于形成非平面微结构 - 沟槽或台面结构,以及具有受控角度的倾斜侧壁。ICP-RIE 方法结合了高精加工精度和可重复性,非常适合刻蚀硬质材料,例如 SiC、GaN 或金刚石。本文回顾了碳化硅刻蚀 - 介绍了 ICP-RIE 方法的原理、SiC 刻蚀结果和 ICP-RIE 工艺的不良现象。本文包括 SEM 照片和从不同的 ICP-RIE 工艺获得的实验结果。首次报道了向 SF 6 等离子体中添加 O 2 以及 RIE 和 ICP 功率的变化对工艺中使用的 Cr 掩模的刻蚀速率和 SiC/Cr 刻蚀选择性的影响。 SiC 是一种极具吸引力的半导体,具有许多优异的性能,通过亚微米半导体加工技术的进步可以带来巨大的潜在利益。最近,人们对 SiC 产生了浓厚的兴趣,因为它在电力电子领域具有广泛的应用潜力,特别是在汽车、可再生能源和铁路运输领域。
了解等离子体纳米材料与其吸附物之间的热载流子动力学对于等离子体增强光电子过程(如光催化、光学传感和光谱分析)至关重要。然而,由于光电子的复杂途径和超快相互作用动力学,确定给定过程的具体主导机制通常具有挑战性。这里以 CO 2 还原为例,使用时间相关密度泛函理论计算清楚地探究了单分子水平上等离子体驱动催化的潜在机制。吸附在两个典型纳米团簇 Ag 20 和 Ag 147 上的 CO 2 分子被光激发等离子体光还原,同时激发 CO 2 的不对称拉伸和弯曲模式。激光强度和反应速率之间存在非线性关系,表明由强局部表面等离子体引起的协同相互作用和从间接热电子转移到直接电荷转移的转变。这些发现为 CO2 光还原和设计高效等离子体介导的光催化有效途径提供了新的见解。
