全基因组CRISPR/Cas9筛选是一种在特定条件下定位位点的简便筛选方法,已被用于肿瘤耐药研究中寻找潜在的耐药相关基因,对进一步治疗获得性耐药的恶性肿瘤具有重要意义。近年来,涉及全基因组CRISPR/Cas9筛选的研究逐渐增多。本文综述了近年来全基因组CRISPR/Cas9筛选在药物耐药中的应用,涉及丝裂原活化蛋白激酶(MAPK)通路抑制剂、聚(ADP-核糖)聚合酶抑制剂(PARPi)、烷化剂、有丝分裂抑制剂、抗代谢物、免疫检查点抑制剂(ICI)和细胞周期蛋白依赖性蛋白激酶抑制剂(CDKI)。总结了KEAP1/Nrf2通路、MAPK通路、NF-κB通路等耐药通路,并分析了全基因组CRISPR/Cas9筛选技术的应用限制和条件。
Bray 的 6A 系列智能电动气动定位器提供精确的流量控制、先进的通信和增强的诊断功能。6A 系列采用成熟的技术,具有坚固的可靠性、高品质的组件和出色的性能。6A 系列定位器由微处理器控制,具有数字电子设备的所有优势。微处理器不断将命令信号与实际阀门位置进行比较,并进行精确的在线调整,直到两个测量值匹配。这些定位器可以接受模拟 4-20 mA、HART、Foundation Fieldbus 或 Profibus PA 输入。6A 系列定位器的设计考虑了安装简便、校准简单、效率高和经济性。模块化产品线可轻松定制以适应特定应用。通过安装可选电路板可以获得额外的定位器功能。旋转单作用和双作用执行器单元作为标准提供。提供本质安全版本以及 FM、CSA、CE 和 ATEX 认证单元。
摘要 在图像数量庞大、人们无法快速检索所需信息的当今世界,我们迫切需要一种更加简便、人性化的图像理解方式,图像字幕应运而生。图像字幕,顾名思义,就是通过分析理解图像信息,生成特定图像的自然语言描述,近年来被广泛应用于图文交叉研究、婴幼儿教育、弱势群体帮扶以及产业界的青睐,产生了许多优秀的研究成果。目前对图像字幕的评价基本基于BLUE、CIDEr等客观评价指标,容易导致生成的字幕无法接近人类语言表达,而GAN思想的引入使得我们能够采用对抗训练这种新的方法来对生成的字幕进行评价,评价模块更加自然、全面。考虑到对图像逼真度的要求,本课题提出了一种基于GAN的图像描述。引入Attention机制来提高图像保真度,使得生成的字幕更加准确,更接近人类的语言表达。
DNA提供了完全集成的出纳员和平台系统。它通过随着这些变化的发生在数据库级别上一次,并且仅在数据库级别进行货币和非货币变化,从而消除了同步问题和数据冗余。如果您当前正在操作旧系统,DNA提供了一种现代化的方式来管理帐户,客户或会员关系,而无需单独的数据库,系统和用户屏幕来创建和管理不同类型的帐户。筹码,储蓄,期限和贷款帐户结构都具有相同的业务逻辑。由于这种共同的逻辑,DNA提高了准确性和效率,同时提供了提供支票访问或存款帐户的灵活性,该贷款以负余额为负的利息。为了快速简便地处理,DNA采用了类似于数字零售商使用的虚拟购物车。交易将依次添加到购物车中,并且可以根据需要轻松修改。为每个会话提供摘要收据,可以通过文本打印,电子邮件或发送。
特点 自调节设置:无需回调调整。不断调整延时设置。 非易失性存储器:学习和调整后的设置保存在受保护的存储器中。断电不会导致状态丢失。 覆盖范围广:选择所需的大致面积。提供从 500 到 2000 平方英尺的单位。 环境光识别:当房间有充足的自然光照明时,光电管会阻止灯亮起 尺寸小巧:球形截面形状使安装几乎不可见。 准确、一致的切换:消除了居住者的投诉;房间有人时灯亮,房间空时灯灭。最大限度地减少了恼人的误关机,并消除了夜间开灯的问题。 安装快速简便:单个安装柱和三根颜色编码的电线使安装变得简单。 光电管:20-3,000 勒克斯可调。出厂设置为 3,000 L(光电管禁用) 定时器设置:自动和手动 - 30 秒至 30 分钟。测试模式 - 6 秒。
探针。[4] 最近的发展主要集中在探索新的分子结构以扩充 RTP 化合物库,旨在实现更长的波长、更大的斯托克斯位移和无金属或无重原子的有机 RTP 发色团。[5] 在实际应用方面,合成毒性更小、更便宜、更坚固、制备工艺简便、应用场景更强大的 RTP 材料仍然具有很大的需求。为了扩大 RTP 化合物的实际应用,需要克服环境条件下激发三重态的快速非辐射衰变( k nr )和氧猝灭( kq )等挑战,以实现 RTP 的有效活化。[6] 一种有效的方法是将发光体保持在相对刚性的环境中以抑制分子运动,从而降低 k nr ,最好也通过阻止氧扩散到刚性基质中来抑制 kq。刚性化可以通过主客体复合物、[7]晶体结构[8]或通过外部基质[9]将发光体困在刚性相中来实现。在这些策略中,将潜在的RTP发色团掺入无定形聚合物基质中非常有吸引力,因为
自从石墨烯 (tBLG) 被发现以来,各种新奇的物理现象被揭示出来,例如独特的电子特性。 [3] 特别是,根据扭曲角度 (θ),具有低θ(1.1至5°)的tBLG表现出不同的物理特性,例如莫特绝缘,超导和异常导电行为,这些特性引起了更多的关注。 [4] 此外,tBLG还被发现在电化学,手性和慢等离子体中发挥着重要作用。 [5] tBLG已成为探索物理性质和寻找新应用的有力模型。 因此,可控制备θ范围为0至30°的高质量tBLG是一项艰巨的挑战。 目前,tBLG的制备主要依赖于人工堆叠的方法,例如堆叠单层石墨烯和折叠单层石墨烯。 [6] 但多次转移过程形成的污染和褶皱不可避免地影响tBLG的耦合质量,降低其固有的物理性能。此外,在超高真空条件下,通过热Si升华在氢刻蚀的6H-SiC(000-1)衬底上制备了tBLG。[7] 但这种方法成本不高,并且需要复杂的石墨烯转移程序。化学气相沉积(CVD)被认为是一种制备高质量石墨烯的简便、可扩展的方法[8],其中Cu和Ni被广泛用作直接生长石墨烯的基底。然而,由于Cu中碳含量低,除非采用复杂的工艺,否则很难以Cu为催化剂制备多层石墨烯。[9] 此外,虽然已经利用Cu-Ni合金作为基底来控制石墨烯层的生长,但是很难打破AB堆叠石墨烯的对称性来形成扭曲石墨烯。[10] 最近,Sun等人[11] 在石墨烯层转移过程中,引入了碳和碳键,从而实现了石墨烯的转移。报道了一种在低压 CVD 系统下引入气流扰动的异位成核策略,用于在 Cu 箔上生长石墨烯畴。[11] 因此,迫切需要找到一种简单的方法来制备具有大扭曲角度范围窗口的高质量石墨烯畴,这对于探索石墨烯畴的独特性能非常关键和必要。在本文中,我们开发了一种在环境压力下在液态 Cu 基底上制备石墨烯畴的简便方法。在高于固态 Cu 熔点(1083 ° C)的生长温度下,在液态 Cu 表面生长的石墨烯畴保持对齐取向。通过调节生长温度,对齐状态被打破,在液态 Cu 上生长的石墨烯畴在表面下移动和旋转
NSDI 的基本前提很简单:提供一种简便、一致的方法来解决地理问题。许多社区都想知道如何保持生活质量、在哪里修建道路和学校、如何管理公用事业、如何保护饮用水。这些基本人类需求以及许多其他类似需求都可以通过利用地理数据来满足。地理信息系统(GIS)是用于收集、存储、分析和显示地理数据的计算机系统。如果这些系统更加普及、更加易于使用、数据更加易得,那么许多这些问题就可以更加容易地解决(摘自《1996 年 NSDI 战略》,草案版本,未发表。可在线获取网址:http://www.fgdc.gov/strategy/vision.html)。1994 年的行政命令要求采取三大举措来发展 NSDI:1) 建立数据生产者和用户的分布式电子网络,即国家地理空间数据交换所; 2) 制定数据记录、收集和交换的标准;3) 促进程序和伙伴关系,以创建一个国家数字地理空间数据框架,该框架将包括对各种用户都有意义的重要基本数据类别。联邦地理数据委员会 (FGDC) 是 NSDI 活动的焦点,
金属有机骨架 (MOF) 是具有独特吸附性能的微孔结晶配位聚合物。它们在催化、1 气体存储、2 分离 3 和微电子领域显示出了巨大的潜力。4 作为传感器涂层,它们可以将分析物富集在传感器表面,在某些情况下是选择性的。5,6 然而,由于缺乏简便和通用的沉积和图案化技术,它们的集成受到阻碍。7,8 基于溶液的 MOF 沉积技术,例如化学溶液生长或液相外延,可能会导致腐蚀或污染。4 化学气相沉积可以避免这些风险,9 但受到金属前体的反应性和连接剂的挥发性的限制。已经展示了多种用于 MOF 涂层的图案化方法。减法方法(例如剥离图案化 9,10 或无抗蚀剂直接光刻 11)涉及修改整个基板,这增加了残留物污染的风险。相比之下,加法图案化技术(例如选择性生长 12、微接触 12,13 和喷墨打印 14,15)仅将目标材料沉积在基板的有限区域上。喷墨打印特别
摘要:近年来,序列特异性成簇的规律间隔短回文重复序列(CRISPR)-CRISPR 相关(Cas)系统已广泛应用于各种细胞类型和生物体的基因组编辑。最发达和最广泛使用的 CRISPR-Cas 系统 CRISPR-Cas9 已从原理验证研究中受益,以更好地了解与药物吸收和处置相关的基因的功能。基因组规模的 CRISPR-Cas9 敲除(KO)筛选研究还有助于鉴定新基因,这些基因的缺失会改变药物跨生物膜的渗透性,从而调节药物的功效和安全性。与传统的异质表达模型或其他基因组编辑技术相比,CRISPR-Cas9 基因操作技术具有显著的优势,包括设计简便、成本低、更高的靶向 DNA 切割活性和多路复用能力,这使得更准确、更有效地研究膜蛋白与药物之间的相互作用成为可能。然而,CRISPR-Cas9 基因编辑的许多机制问题和挑战尚未解决,从脱靶效应到大规模基因改变。本综述将介绍 CRISPR-Cas9 在哺乳动物基因组编辑中的机制,以及 CRISPR-Cas9 在研究药物递送障碍方面的应用。