引言 魔鬼点(DP)和例外点(EP)描述依赖于参数的系统简并性1,2。EP指具有合并特征态的非厄米系统的简并性,在具有增益和损失的系统中很常见,例如宇称时间对称系统3 – 5。DP表示具有两个正交特征态的厄米系统的简并性。与具有增益和损失的EP相比,DP具有更高的实用性,提供了具有可控相移的几何相,并为研究拓扑或量子DP行为引入了新方法6 – 11。因此,处于DP位置的光子结构中的光子在量子信息和量子计算中具有潜在的应用12 – 15。同时,光子结构中的有源发射器对于相干电子 – 光子界面实现量子信息处理至关重要
测量假设是量子力学的基础 [1]。要获得有关封闭系统量子态的信息,需要与额外的读出系统(仪表)相互作用。可以设计这种相互作用,使得测得的可观测量是读出过程中运动的积分。这称为量子非破坏(QND)测量。QND 测量使重复测量能够得到相同的结果,最初旨在超越与引力波探测相关的标准量子极限 [2-4]。随着量子信息的发展,人们对 QND 测量方法的兴趣与日俱增,它们在各个方面发挥着重要作用,例如,误差校正 [5] 或通过测量初始化 [6]。超导通量量子比特 [7] 对于量子退火领域 [8-15] 尤其令人感兴趣,其中电感耦合的内在可能性和相当大的非谐性带来了巨大优势。然而,对于通量量子比特,在持续电流基中 QND 测量仅在远离通量简并点的地方进行 [ 16 – 20 ]。在简并点处,作为测量变量的持续电流的期望值对于量子比特能量本征态为零。通过将量子比特横向耦合到谐振器,可以测量简并点处的能量本征基,从而测量量子电感 [ 21 – 24 ],或者通过使用基于调制耦合的更复杂方案 [ 25 ]。在任意操作点的通量基中进行测量的能力在量子退火中尤其有趣。如果能够在退火过程中进行测量,而无需首先将量子比特远离简并点,那么将带来巨大的优势,例如,避免退火计划中的淬火,这会限制成功概率 [ 13 , 26 , 27 ],或者仅通过随机相互作用实现量子加速 [ 28 ]。此外,
识别拓扑属性是一项重大挑战,因为根据定义,拓扑状态没有局部序参数。虽然目前还没有针对这一挑战的通用解决方案,但可以通过其纠缠谱中独特的简并性来识别一大类拓扑状态,即对称保护拓扑 (SPT) 状态。在这里,我们提出并实现了两个互补协议来探测这些简并性,分别基于对称解析纠缠熵和基于测量的计算算法。这两个协议将量子信息处理与物质 SPT 相的分类联系起来。它们调用集群状态的创建并在 IBM 量子计算机上实现。将实验结果与噪声模拟进行比较,使我们能够研究拓扑状态对扰动和噪声的稳定性。
一维倾斜、周期性驱动的费米-哈伯德链是量子多体物理研究的典范,特别是对于固态系统。我们报告了弗洛凯疤痕态的出现,这是一类无法进行随机热化的量子多体疤痕 (QMBS) 态。其潜在物理机制被确定为这些简并 Fock 基之间的弗洛凯共振,它们可以通过一阶跳跃扰动连接起来。借助简并弗洛凯微扰理论,我们推导出奇异 QMBS 态出现的确切条件。我们还研究了量子复兴和亚谐波响应等现象。这些结果为调节和设计固态量子多体系统以实现非遍历性提供了可能性。
虽然这些轨道上的电子与 MnO 中金属离子周围的六个 O 2- 离子上的电子之间可能会发生排斥,从而增加这些轨道的能量,但这些轨道仍将保持简并状态(具有相同的能量)。
在量子力学中,环境被认为起着负作用,破坏量子系统的相干性,从而随机改变其状态。然而,对于最初处于简并基态的量子系统,情况可能会有所不同。在这种情况下,基态特征函数的无限流形可以包含一些零纠缠态,这可以通过最小化冯·诺依曼熵来证明。然后,遵循量子达尔文主义,这些“经典”组合由量子环境选择和促进,这意味着不同的独立观察者在实验中发现它们。在这项工作中,我们从安德森状态塔的数值实现出发,在天元和反铁磁量子系统的特征谱中发现并探索了这种经典状态。量子基态的简并性被证明是解释经典世界中磁性物质的非平凡性质的关键,包括经典极限下出现的拓扑保护。
我们研究了在“严格”空间变化的磁场(但不满足磁单极子条件)下相对论冷电子的二维运动。我们发现,在恒定磁场的情况下出现的朗道能级简并性在磁场变化时会消失,自旋向上和自旋向下电子的能级会根据磁场变化的性质以有趣的方式排列。此外,变化的磁场会将零角动量电子的朗道能级与正角动量分开,而恒定场只能将能级分为正角动量和负角动量。探索非均匀磁场中的朗道量子化本身就是一项独特的事业,对凝聚态物质、天体物理学和量子信息等领域都有跨学科影响。作为示例,我们展示了磁化白矮星,它们受到变化的磁场,同时受到洛伦兹力和朗道量子化的影响,从而影响底层的简并电子气,表现出对钱德拉塞卡质量极限的明显违反;并且在空间增长的磁场存在下,电子的量子速度会增加。
在八面体配合物中,金属离子位于中心,配体位于六个角。图中,方向 x、y 和 z 指向八面体的三个相邻角。eg 轨道(dx 2 -y 2 和 dz 2 )的叶瓣指向 x、y 和 z 轴,而 t 2g 轨道(dxy、dzx 和 dyz)的叶瓣指向轴之间。因此,六个配体沿 x、yz、-x、-y 和 –z 方向的接近将使 dx 2 -y 2 和 dz 2 轨道(指向配体)的能量增加,远大于使 dxy、dzx 和 dyz 轨道(指向金属-配体键轴之间)的能量增加。因此,在八面体场的影响下,d轨道分裂为能量较低的三重简并轨道和能量较高的双重简并轨道。这两组轨道之间的主能级取为零,称为重心。这两个轨道之间的分裂称为晶体场分裂。稳定度为0.4 Δ o ,不稳定度为0.6 Δ o 。
绝大多数非常规超导体都具有简单的单组分相图。这是令人惊讶的,因为 3 He 中的超流动性质( 1 )以及可以预期简并或近简并现象将由许多非常规超导电子机制产生的事实( 2 )表明,许多材料应该具有温度 - 磁场相图,并且在超导状态下不同超导序参量之间会发生转变。然而,到目前为止,唯一已证实在环境压力下具有此类相图的化学计量超导体是 UPt 3 ( 3 – 5 )。本文,我们报告在重费米子材料 CeRh 2 As 2 中发现了此类相图。实验表明,尽管 CeRh 2 As 2 的超导转变温度 T c 仅为 0.26 K,但它具有高达 14 T 的极高超导临界场。此外,当沿晶体 c 轴施加磁场时,超导状态在 ~4 T 处包含一个明确的内部相变,我们使用几个热力学探针对其进行了识别。我们还认为,这些观察结果来自与 UPt 3 不同的物理原理;CeRh 2 As 2 的关键超导特性可能是局部反演对称性破坏的表现,以及随之而来的 Rashba
ez-way EZ-Way®是一种用于控制和导航移动机器人的软件,是一种用于控制和导航移动机器人的软件,可确保流畅有效的操作。确保流畅有效的操作。安装在每台计算机上,它可以保证移动机器人管理,机器人本地化,导航和任务执行。作为开发移动机器人的加速器,EZ-Way®精简并增强了机器人功能。软件EZ-Way®