有机发光二极管 (OLED) 显示器的广泛使用推动了 OSC 逐渐渗透到日常生活中。[5] 低功耗、重量轻、亮度高、发光效率高和响应时间快等一系列技术优势推动了 OLED 作为传统液晶显示器的替代品的应用。[6] OLED 是一种纳米厚的半导体器件,在施加合适的电偏压时能够产生光子。然而,OLED 的垂直结构要求光子至少穿过一个电极,由于光腔效应和电极透明度有限,这对器件特性造成了很大限制。[7,8] 在这一背景下,有机发光晶体管 (OLET) 在过去十年中备受关注,因为它能够通过简单的平面结构将晶体管的逻辑开关功能与光发射相结合。 [6,9,10] 最重要的是,光发射可以调节到远离金属电极的位置。[11] 因此,对于 OLED,由于可以避免不希望的猝灭和光学效应,因此可以预测光学效率可能会提高。此外,平面 OLET 结构为实现具有复杂功能的集成系统提供了关键特性。[12,13] 在 OLET 中,
有机半导体已用于各种电子设备,包括有机发光二极管 (OLED)、[1] 有机太阳能电池、[2] 有机光电探测器 [3] 和各种形式的有机晶体管 [4–7]。所有这些设备的根本要求是在有机半导体和电触点之间的界面上高效地注入和/或提取电荷。[8] 因此,对实现高效电荷注入/提取所需的活性材料和设备工程的广泛研究和开发对于实现 OLED 的商业化等至关重要。该领域的进展现已达到这样的程度,即与有效载流子和激子限制、能量转移、外耦合和寿命等其他方面相比,电荷注入和提取并不是限制 OLED 最新技术发展的最关键问题。 [9–12] 有机太阳能电池也是如此,最近其主要关注点和改进源泉与非富勒烯受体的开发更加紧密地联系在一起。[13] 另一方面,各类有机晶体管多年来一直被吹捧为新型大面积集成电路应用领域中基于无机半导体的晶体管的主要替代品,[14,15] 但尚未在消费电子产品中得到广泛采用。与无机晶体管相比,有机晶体管的几个缺点,例如电荷载流子迁移率通常较低、器件均匀性较差、可靠性降低[16],随着时间的推移,这些缺点已经得到显着改善,因此现在一些利用有机薄膜晶体管 (TFT) 的商用器件已经面世。[17] 然而,接触电阻 (RC) 仍然是进一步开发基于有机晶体管的电路的主要障碍。 [18–21] 对于低功耗、高频应用(如移动有源矩阵显示器)的有机 TFT 的开发尤其如此,因为高 RC 限制了通过器件小型化可以实现的最大单位电流增益截止(传输)频率。[22] 尽管在扩展有机 TFT 的宽度和性能方面取得了重大进展,但有机 TFT 中的高接触电阻仍然是一个主要问题
为了利用无机纳米管用于务实目的,其机械性能的表征成为一个相关问题。在本研究中,通过使用Stillinger-weber-weber类型的原子间潜能来获得几个直径WS 2纳米管和两个主要晶格方向的机械性能的一系列结果。根据实验结果获得了接近170 GPA的纳米管的年轻模量,而T多型的纳米管的130 GPa获得了,几乎不依赖于纳米管的直径。拉伸强度大至20 GPa(h扶手椅纳米管,接近实验中获得的值),而破裂点的应变达到接近0.24的值。研究了几种缺陷对机械性能的影响,结果表明,当缺陷在没有整个WS 2单位的情况下组成时,拉伸强度和破裂点会大大下降,并且裂缝变得比原始纳米管更脆。还研究了机械性能对温度的依赖性。
半导体纳米结构对实施高性能热电发电机提出了很大的希望。的确,他们预计他们将提供降低的导热率,而不会在电导率上进行大量权衡,这是优化功绩热电图的关键要求。在这里,提出了一种新型的纳米式体系结构,其中用离子液体用作热构造栅极介电。这些设备允许在悬浮的半导体纳米线中对电运转运的现场效应控制,其中可以使用全电动设置同时测量热导率。可以合并有关在单个纳米版本上采用的电气和热传输特性的实验数据,以提取ZT,指导装置优化和热电性能的动态调整。
摘要 - 为了改善MOS晶体管操作特征,例如开关速度和功耗,集成设备的尺寸不断降低,以及其他进步。地理标度的主要缺点之一是名义上相同设备之间阈值电压的变化增加。其起源在于位于氧化物内部和氧化物和半导体之间的界面层的缺陷。同时,缺陷的数量变为接近纳米尺度的设备中的可数量。此外,它们对设备性能的影响显着增加,以一种可以直接从电气测量值观察到来自单个缺陷的电荷过渡。描述由单个缺陷引起的设备的降解,必须研究其对V TH偏移的影响的分布。对于Sion技术,文献中已经报道了单个缺陷的步骤高度的单模式指数分布。但是,我们的结果表明,步进高度更可能是双模式的分布。这些发现对于准确评估分布的尾部至关重要,即缺陷对V th产生巨大影响。这种缺陷会导致设备和电路的直接故障。在这项研究中,创建和分析了单个缺陷效应的统计分布。我们将结果与使用常用的电荷表近似(CSA)计算的值进行了比较,并表明CSA显着低估了研究技术对缺陷的实际影响。最后,我们使用所获得的分布,并使用我们的紧凑型物理建模框架分析了它们对测量应力测量模拟变异性的影响。
埃默里·克利夫顿(Emory Clifton)校园1365 Clifton Road,NE Building A,2楼亚特兰大,GA 30322 404-778-5299心脏病学404-778-5040心脏手术404-778-3712心脏病学(Suite 110)678-843-5400血管外科手术(Suite 203)
在量子染色体动力学(QCD)中,假定夸克和反夸克之间的颜色非亚伯式场是由于此类局势的不同组分之间的强非线性相互作用而在管中构建的。该管的性质使得在管之外,所有田间,因此能量密度,随着距离而呈指数降低。在这样的管中,有一个纵向的电场连接夸克,并彼此吸引。这是夸克提案的解释。在经典的SU(3)非亚伯利亚Yang-Mills理论中,与其他领域没有耦合,这种解决方案显然不存在。反过来,QCD中的晶格计算表明,确实存在这种非阿贝尔族的配置。当涉及其他领域时,已经存在此类解决方案。例如,当电磁场与Higgs标量线相互作用时,存在具有磁场的通风的试管,即Nielsen和Olesen [1]发现的众所周知的解决方案。非亚伯液管溶液,其力线沿着管轴扭曲,其力线被扭曲。另一个有趣的事实是,这些管子可以存在于Proca理论中。例如,在[3]中,表明存在带有非线性术语的复杂矢量字段支持的引力和非循环Q管,在某种意义上可以模仿非亚伯利亚Yang-Mills理论中的自我相互作用。在[4,5]中,已经证明了与Higgs标量线相连的SU(3)中的管子的存在。在这些论文中,发现了两种类型的管溶液。在第一种类型的试管中,沿着位于±∞的彩色电荷(夸克)产生的管子沿着管子产生的纵向颜色电场有一个纵向颜色的电场。在第二种类型的试管中,沿着管子有一个动力。这种动量的存在显然等于沿着管转移的能量频道的存在。
这是作者的同行评审并被接受的手稿。但是,一旦编辑和排版完成,记录的在线版本将与此版本不同。
摘要:多末端电双层晶体管最近在模仿合成和神经功能方面引起了广泛的兴趣。在这项工作中,提出了一个离子凝胶的石墨烯突触晶体管,以通过利用石墨烯的双极性能和离子 - 凝胶的离子电导率来模仿基本的合成行为。通过自旋涂层过程将离子 - 凝胶介电作用沉积到石墨烯膜上。我们分别将顶门和石墨烯通道分别为突触前和突触后末端。基本的突触功能成功模仿,包括兴奋性突触后电流(EPSC),峰值振幅和持续时间对EPSC的影响以及配对脉冲促进(PPF)。这项工作可以促进石墨烯突触晶体管在柔性电子中的应用。