•RCTS(总共28,873例患者):肌腱炎和脊髓炎炎很常见(<1%),肌腱破裂很少见(<0.1%)。•病例报告(10例肌腱破裂和15例肌腱炎):报告了所有三种类型的第三代AI病例,并涉及上肢和下肢。存在可能导致不良事件的其他药物和/或疾病。由于这些报告中的信息不足,因此在审查中未包括替索诺伏炎的病例报告。
摘要:在这项工作中,我们介绍了一种人工智能(AI)应用程序(CHATGPT)来培训另一个基于AI的应用程序。作为后一个,我们显示了一个名为Terabot的对话系统,该系统用于精神病患者的治疗。我们的研究是出于这样一个事实的激励,即对于这种特殊领域的系统,很难获取大量的现实数据样本来增加培训数据库:这需要招募更多的患者,这既耗时又昂贵。为了解决这一差距,我们采用了神经大型语言模型:CHATGPT版本3.5,仅生成用于培训我们的对话系统的数据。在最初的实验中,我们确定了最常见的意图。接下来,我们用一系列提示为Chatgpt提供了喂养,这触发了语言模型,以生成许多其他培训条目,例如,在与健康用户进行初步实验中收集的短语的替代方案。以这种方式,我们将培训数据集扩大了112%。在我们的案例研究中,为了进行测试,我们使用了来自32名精神病患者的2802次语音记录。作为评估指标,我们使用了意图识别的准确性。使用自动语音识别(ASR)将语音样本转换为文本。分析表明,患者的语音对ASR模块的质疑显着,导致语音识别恶化,因此意图识别的精度较低。但是,由于使用ChatGpt生成的数据增加了培训数据,意图识别精度相对增加了13%,总共达到了86%。我们还模拟了无错误的ASR的情况,并显示了ASR错误识别对意图识别准确性的影响。我们的研究展示了使用生成语言模型开发其他基于AI的工具的潜力,例如对话系统。
摘要:增材技术目前已广泛应用于复杂精密零件的生产,在成型模具的生产方面具有很高的潜力。本文利用电弧直接能量沉积 (WA-DED) 和激光粉末床熔合 (L-PBF) 技术开发和生产了针对增材制造优化的热成型模具。开发了具有 2D 晶格结构的轻质热成型模具的概念,在使用 L-PBF 生产时,每个模具的重量减少了 56%,从 14.2 千克减轻到 6.1 千克。在增材制造过程中,马氏体时效/沉淀硬化钢 17-4PH 被用作传统热作钢的替代品,后者的机械性能略低,但可加工性高得多。通过在工业螺旋压力机上进行锻造试验,确认了所制造模具的可加工性。
prep(等离子体旋转电极工艺,AMS 4999a)是一种公认的金属粉末,通过在纵向轴时熔化金属棒的末端。融化的金属被嘲笑,并形成凝固成球(粉末颗粒)的液滴。电极被等离子体融化。我们的粉末是根据准备过程的扩展而产生的,即所谓的ss-prep过程。这使我们能够提供更高质量和球形粉末(根据ISO 13320:2009)。我们已经通过单个步骤和相关机器显示了以序列顺序为您的信息的制造过程。
添加剂制造(AM)工艺,例如激光粉末床融合,可以通过分层扩散和熔化粉末来制造物体,直到创建自由形式的零件形状。为了提高AM过程中涉及的材料的特性,重要的是要预测材料表征作为处理条件的函数。在热电材料中,功率因数是对材料如何将热量转化为电的有效性的量度。虽然较早的作品已经使用各种技术预测了不同热电材料的材料表征特性,但在AM过程中尚未探索机器学习模型的实现,以预测鞭毛尿酸酯(BI2TE3)的功率因数。这很重要,因为BI2TE3是低温应用的标准材料。作为概念证明,我们使用了有关涉及的制造处理参数的数据以及在BI2TE3 AM中收集的原位传感器监视数据,以训练不同的机器学习模型,以预测其热电功率因子。我们使用80%的培训和20%的测试数据实施了监督的机器学习技术,并进一步使用了置换功能重要性方法来识别重要的处理参数和原位传感器功能,这些特征最能预测材料的功率因数。基于合奏的方法,例如随机森林,Adaboost分类器和Bagging分类器,在预测功率因数方面表现最好,而袋装分类器模型则达到了90%的最高精度。此外,我们发现了前15个处理参数和原位传感器功能,以表征材料制造属性(例如功率因子)。这些功能可以进一步优化,以最大程度地提高热电材料的功率因数,并提高使用该材料制造的产品的质量。
摘要:增材制造 (AM) 是制造技术发展的主要增量。过去几十年来,该研究领域取得了巨大进步,包括工艺、设备和材料的增长。无论技术进步多么引人注目,技术挑战都推动着这些技术的应用和发展。金属增材制造被认为是工业革命的主要领域。根据材料和工艺分类,已经开发出各种金属 AM 技术,包括选择性激光烧结 (SLS)、激光粉末床熔合 (PBF-LB/M) 和电子束粉末床熔合 (PBF-EB/M)。PBF-LB/M 被认为是金属材料最合适的选择之一。由于钽的高生物相容性及其高端安全应用,钽的 PBF-LB/M 已成为本世纪的研究热点。多孔钽的 PBF-LB/M 可通过调整机械和生物医学特性以及具有可预测特征的先进植入物设计,引领生物医学和骨科领域尚未开发的研究前景。本综述主要探讨使用 PBF-LB/M 工艺增材制造钽和相关合金的最新进展。分析包括对工艺参数、机械性能和潜在生物应用的评估。这将为读者提供有关钽合金 PBF-LB/M 现状的宝贵见解。
摘要 多种增材制造方法已经成熟,并已在多个行业投入常规生产。对于金属加工,通常使用线材或粉末作为原料。线材加工通常用于相对较大的结构构建,而粉末加工通常提供更精确的金属应用。对于粉末床熔合工艺,使用非常细的粉末(通常为 20 µm 至 65 µm),而对于定向能量沉积,粉末的范围在 50 µm 至 160 µm 之间。这种细粉末可能对人类健康构成风险(吸入、皮肤整合)。避免在生产环境中接触粉末可能是一项艰巨的任务,甚至无法避免。因此,开发了一种替代工艺,该工艺不是以自由粉末颗粒的形式提供粉末,而是以粉末片的形式提供粉末。为了实现颗粒之间必要的粘合,使用粘合剂。为了了解粘合剂在激光加工粉末片过程中的影响,产生了单脉冲和线处理并用高速成像记录下来。记录显示了粘合剂的蒸发和相关的粉末颗粒的喷出。在较低的能量输入下,粘合剂蒸发导致较少的飞溅,这表明在低加热速率下加热粘合剂会对粉末颗粒产生较小的压力。
M. Salehi等。 “通过毛细管介导的无结合三维印刷的镁 - 锌 - 锌(ZK)合金的添加剂制造”,《材料与设计》,169(2019)。 M. Salehi等人,“通过纳米颗粒作为烧结剂作为烧结辅助工具的粘合喷气添加剂制造中的致密性”,《制造过程杂志》,99,(2023),M. Salehi等。“通过毛细管介导的无结合三维印刷的镁 - 锌 - 锌(ZK)合金的添加剂制造”,《材料与设计》,169(2019)。M. Salehi等人,“通过纳米颗粒作为烧结剂作为烧结辅助工具的粘合喷气添加剂制造中的致密性”,《制造过程杂志》,99,(2023),
增材制造 (AM) 仍是一项相对较新的技术。与从毛坯中去除材料的传统加工不同,AM 用于从空工作空间开始将原料逐层熔合成复杂形状。AM 能够制造复杂的零件几何形状和零件变体,而几乎无需额外制造成本。以前不可能制造的几何形状现在可以作为设计选项使用,例如弯曲的内部通道、复杂的晶格结构和设计的表面孔隙率 - 所有这些都可以重复生产。电子束粉末床熔合 (PBF-EB) 是一种 AM 方法,其中使用电子束将细颗粒粉末加工成零件。自诞生以来,PBF-EB 一直受到可供加工的材料数量的限制。本论文的目的是探索使用 PBF-EB 加工不锈钢的可能性。这项工作的重点是开发高效加工参数,目的是获得高密度成品材料,并了解工艺参数与零件由此产生的微观结构和其他质量方面之间的关系。两种不锈钢粉末,316LN(奥氏体)和超级双相 2507(奥氏体/铁素体),通过各种工艺参数使用各种熔化策略加工成固体零件。在选择一组以高加工速率生产高质量零件的参数之前,对密度、微观结构特征和机械性能进行评估和评定。这项工作的结论是,不锈钢非常适合 PBF-EB 加工,具有宽广的加工窗口。研究还表明,材料性能受所用加工参数的影响很大。对于超级双相不锈钢 2507,制造的部件需要进行制造后热处理才能达到所需的微观结构、相组成和拉伸性能,而 316LN 则可以在更大程度上直接使用,只要使用适当的制造准备和加工参数即可。
晚期分子图像技术(AMIT)超导回旋子的内部离子源使用纯tantalum制成的阴极生成高能H-离子束,以生产正电子发射断层扫描的同位素。在服务期间,阴极受到血浆中高能离子的影响。所产生的侵蚀会产生陨石坑,从而降低提取光束的电流密度。当离子源无法再激活时,最终需要更换阴极。这项研究探讨了通过激光金属沉积添加剂制造来修复Amit回旋子中使用的触觉阴极的可能性。首先将受损的部分以3D成像,扫描电子显微镜和Vickers显微硬度为特征,以了解服务过程中发生的损伤机制并量化损害的程度。使用高纯度触觉线和粉末原料进行了测试,并确定了使用高纯度触觉的电线和粉末原料。已经证明了激光金属沉积恢复用于Amit Cyclotron的受损阴极的能力。