摘要:生物合作代谢是一种用于治疗难治性有机物的经济和有效的技术,近年来,它已被广泛用于治疗含氯苯酚的废水。已经发现,许多条件都会影响生物合作代谢效率,例如碳源类型,碳源含量,微生物类型和环境因素。碳源浓度实验表明,当乙酸钠与黑苯胺粉的剂量比为1:2时,黑苯胺粉末的降解速率为82%,去除率为92.9%。当四氯苯酚从210 mg/L增加到2100 mg/L时,四氯苯苯酚在流出物中增加,并且微生物的活性被抑制。此外,活性污泥的沉积性能也损坏了。温度测试表明,在35°C下去除的4-氯苯酚高达2100 mg/L,并且可以在20°C下检测到废水中的明显4-氯苯酚残基。因此,通过适当控制反应堆的外部工作条件,可以实现难治性有机物(例如氯苯酚)的合作代谢。
摘要。锂离子存储设备的开发使纳米结构化材料具有巨大的表面积,孔隙率和增强的反应性,这是一个关键的研究领域。这些特殊的特质允许新型的活动过程,缩短锂离子的传输距离,降低特定的表面电流密度,并显着增强电池恒定和特定能力。此外,通过降低具有集成电子导电通道的复合纳米结构,即使在高电荷和放电速率下也可以提高特定能力。在锂离子存储中雇用纳米材料电极可提供能量密度,功率输出,周期寿命或这些优势的任何优势的能源密度,电力输出,循环寿命或从电池单位上的任何优势组合的变化。纳米颗粒或纳米粉电极材料(例如传统微米大小的粉末的超细变体)是该区域中第一个纳米技术应用的主题。由于其导电品质,Carbon Black是锂离子电池中最早使用的纳米材料之一,自该技术创建以来就一直使用。本研究将检查纳米材料是否会影响锂离子电池的寿命和性能,并重点介绍了这些切割材料改善电池寿命和性能的方式。
虽然对低噪声,易于操作和网络[1]保持着巨大的希望,但有用的光子量子计算已被MILIONS制造的超出状态组件的需求[2-6]所取得了。在这里,我们引入了一个可制造的平台[7],用于带有光子的量子计算。我们将一组单一集成的基于硅光子的模块标记,以生成,操纵,网络和检测预示的光子量子量,表明具有99的双轨光子量子。98%±0。01%的状态预先预期和测量保真度,带有99的独立光子源之间的Hong-ou-mandel量子干扰。50%±0。可见度25%,两分融合与99。22%±0。12%的保真度,以及99的芯片到芯片量子。72%±0。04%的保真度,以光子检测为条件,不考虑损失。我们预览了一系列下一代技术,即低降低氮化硅波导和组件,以解决损失以及制造耐受性光子源,高效效率光子 - 单位分辨率的探测器,低溶质粉末 - 粉状粉末粉末的含量和滴定液滴定相位的较高的转换阶段。
添加剂制造已从快速原型技术发展为一种能够生产具有高度复杂零件的机械性能,而机械性能超过了传统上实现的特性。 div>激光技术对金属粉末的加工允许处理多种合金甚至复合材料。 div>这项研究分析了通过选择性激光融合合并的316L不锈钢的牵引和压缩响应。 div>通过光学MI磨练分析了结果分钟。 div>关于机械性能,对蠕变的抗性,对牵引力的最终抵抗力,裂缝前经济百分比,对理解和微量残留性的抗性。 div>结果表明,微观结构是由堆叠的熔融微底裂组成的,在该微孔中,由于高热梯度和高固化速度,生成了细胞子图。 div>压缩抗性(1511.88±9.22 MPa)优于牵制性(634.80±11.62 MPa)。 div>这种差异主要与变形硬化和残余张力有关。 div>最初的微腐烂率为206.24±11.96 HV,在压缩测试后,硬度增加了23%。 div>
高沉积速率定向能量沉积工艺的主要挑战之一是材料沉积过程中产生的残余应力,这常常导致材料变形和性能不佳。适用于航空航天领域 DED 工艺的重要零件系列是薄壁部件,其特点是具有大基底表面积和肋状加强结构。在这里,基板可以设计为最终部件的一部分。基板集成到最终部件中可能会导致变形,这是由于加工过程中的残余应力释放造成的。因此,本文研究了各种基于粉末的激光金属沉积工艺参数和策略对增材制造的 Ti-6Al-4V 部件的残余应力状态以及加工过程中产生的应力释放的影响。分析是在加工过程中进行的,包括基板的在线应变测量。所采用的层去除方法允许基于分析和 FEM 模型确定加工区域特定的应力释放图。因此,计算了零件的初始残余应力状态,结果表明,尽管热处理解决了大部分残余应力,但在热处理零件中,根据处理过程中的零件夹紧情况,也发现了残余应力。此外,研究表明,靠近基材的层中存在显著的残余应力。
摘要:由于其良好的材料特性(例如耐腐蚀、耐磨、生物相容性),聚酰胺 12(PA12)等热塑性材料因可用作金属部件上的功能涂层而备受关注。为确保涂层的空间分辨力并缩短工艺链,通过激光束(DED-LB/P)进行聚合物粉末的定向能量沉积是一种很有前途的方法。由于特征吸收带,在 DED-LB/P 装置中使用波长为 1.94 µ m 的铥光纤激光器进行研究,以在无需添加任何吸收添加剂的情况下在不锈钢基材上生成 PA12 涂层。通过红外热成像分析了能量密度和粉末质量流量的影响。此外,还通过差示扫描量热法、激光扫描显微镜、光学显微镜和交叉切割测试对涂层进行了表征。本研究结果首次证明了使用铥光纤激光器实现无吸收体 DED-LB/P 工艺的基本可行性。可实现孔隙率低、附着力好的 PA12 涂层。根据特定应用的要求,必须在 PA12 涂层的密度和表面质量之间进行权衡。使用红外热成像技术适用于现场检测因能量输入过多而导致的工艺不稳定性。
大多数反应器中不同的金属焊缝是低合金钢零件和不锈钢管道之间的连接。造成不同金属焊接接头材料特性差异引起的残余应力造成的原发性水应力腐蚀破裂(PWSCC)损害很高。在世界范围内报告了许多事故,例如由于PWSCC引起的放射性冷却液泄漏,对核安全构成了巨大威胁。这项研究的目的是通过使用由金属3D印刷制造的功能分级材料(FGM)代替现有的不同金属零件来从根本上清除不同的金属焊缝的技术,该焊接由低合金钢和高质量不锈钢制成。进行了粉末的产生,混合比计算和金属3D打印,以制造低合金钢钢钢FGM,以及对FGM的热膨胀(CTE)测量的微结构分析,机械性能和系数。结果,观察到,随着FGM中的奥氏体含量的增加,CTE倾向于增加。FGM中热膨胀系数的逐渐变化表明,使用3D打印的添加剂制造可有效防止其整个层的热膨胀性能突然变化。关键字:功能分级材料(FGM); PWSCC; 3D打印;反应堆;热膨胀系数(CTE)
由于直接制造设施、设计灵活性和有效的交付周期,增材制造 (AM) 在许多行业中越来越受欢迎。定向能量沉积 (DED) 是 AM 的一种变体,激光金属沉积 (LMD) 被视为 DED 工艺,它使用激光作为热源来熔化和沉积通过喷嘴以粉末形式送入的原材料。本文介绍了一项研究工作,研究了使用 PH 13-8 Mo 不锈钢粉末的 S 形激光金属沉积部件的形式。进行了实验工作以生产 S 形单珠壁,主要工艺参数影响能量密度。通过将能量密度水平分为低、中、高,讨论了结果。可以清楚地观察到,低能量密度水平参数不会产生或产生不合适的 S 形壁。然而,高能量密度水平参数会产生相对较好的沉积壁,但由于沉积过程中的热量积累,壁的几何形状不稳定。在每个能量密度水平上都可以看到沉积壁上的球化。当没有足够的热能来熔化和沉积来自移动喷嘴的粉末时,就会出现这种缺陷。
摘要 激光金属沉积 (LMD) 模拟对于增材制造工艺规划至关重要。本文介绍了 LMD 的 2D 加厚度非线性热模拟的计算实现,其中考虑:(i) 与温度相关的材料特性,(ii) 由于对流和辐射引起的热损失,(iii) 材料沉积过程中的几何更新,(iv) 相变和 (v) 激光与基材之间的相互作用。该实现计算与激光轨迹垂直的横切面上的温度场历史和焊珠积累的历史。材料沉积模型基于输送粉末的空间分布。本文介绍了对生长焊珠进行有效局部重新网格划分的数学和数值基础。将焊珠几何形状的数值估计与现有文献中的实验结果进行了比较。本模型对预测焊珠宽度(误差 15%)和焊珠高度(误差 22%)具有合理的精度。此实施为内部实施,允许纳入额外的物理效应。需要进行额外的工作来考虑基材上的粒子(热)动力学,这会导致大量的材料和能源浪费,进而导致在执行的模拟中高估实际温度和熔融深度。
abtract。本文详细介绍了通过使用356铝合金和B 4 C粉末搅拌铸造的双重颗粒复合材料进行的研究。三个复合组合物,即A356加2%B 4 C(44µm大小和1:1比例的105µm大小),4%B 4 C(3:1比)和6%B 4 C(1:3比)用手指施放,从中为硬度和紧缩测试和张力测试效果准备了测试样品,以进行测试样品。Vickers硬度测试,拉伸测试和显微结构分析。获得的结果表明B 4 C颗粒均匀分布在合金基质中。eds还揭示了所有三个复合材料中B 4 C的存在。通常,随着浓度b 4 c粉末的增加,硬度和拉伸强度会增加。虽然硬度的增加量却小于15%,但拉伸强度显着增加(超过35%)。然而,以%伸长为代表的延展性,在356铸造合金中已经非常低(24.2%),在复合材料中进一步降低。拉伸分裂结果显示了晶体间断裂,其中观察到B 4 C粒子中的断裂而不是Deboning。k eywords。A356铝合金;双重复合材料;微观结构;机械测试;研究分析。