靶向放射性核素治疗 (TRT) 也称为分子放射治疗、靶向放射治疗或放射治疗诊断学,是一个快速发展的领域,最近取得了重大突破 ( 1 - 3 )。它旨在治疗播散性癌症,这是肿瘤学的主要临床挑战 ( 4 , 5 )。TRT 基于个性化患者选择,使用分子成像来验证癌细胞表面或转移瘤的血管和/或基质元素中是否存在生物靶标。唯一获批的 α 发射放射性药物是 Xofigo( 223 RaCl 2 ,于 2013 年获批)。最近,β 辐射 177 Lu-PSMA- 617(Pluctivo,2022 年获批)获批用于治疗表达前列腺特异性膜抗原 (PSMA) 的转移性去势抵抗性前列腺癌 (mCRPC),177 Lu- DOTATATE(Lutathera,2018 年获 EMA 批准)获批用于治疗生长抑素受体阳性神经内分泌肿瘤 (NET),这显然将 TRT 转变为癌症治疗的主流。尽管如此,一些患者要么对 177 Lu 疗法没有反应,要么在最初反应良好后,对基于 177 Lu 的疗法产生了耐药性,尽管癌细胞表面靶蛋白表达充足(6、7)。许多临床前和临床试验表明,由于发射α粒子的放射性药物具有物理特性、高线性能量转移以及相对于β粒子发射而言在组织中的射程短,因此正在成为一种有前途的癌症治疗方法(8-11);它们还可以直接杀死缺氧或放射和化学抗性的癌细胞。本研究主题的目的是描述针对不同癌症的新型发射α粒子放射性药物的开发,单独或联合使用的靶向α粒子治疗(TAT)的近期临床前、已完成和正在进行的临床试验,剂量测定、安全性、与合适的发射α粒子放射性核素的供应和可用性相关的挑战,以及一些未来前景。本研究主题包括 16 篇文章,重点关注原创研究(四篇文章)、对 TAT 不同方面的评论(9 篇文章)、正在进行的临床试验(一篇文章)、研究方案(一篇文章)以及假设和理论(一篇文章)。来自澳大利亚、比利时、法国、德国、波兰、挪威、新加坡、瑞典、瑞士、英国和美国的关键意见领袖、医生和科学家为该研究课题做出了贡献。
摘要 本文介绍了对 CVD 钻石进行的研究,以确定带电粒子的痕迹(CVD 是化学气相沉积的缩写)。辐射硬度是探测器的先决条件,探测器应在 CERN 大型强子对撞机的 ATLAS 和 CMS 实验的相互作用区域附近工作。基于金刚石的探测器可能是该领域像素探测器和条形探测器的抗辐射选择。这项工作包含四个主要成果。首先,将某厂商钻石样品的探测器质量从30μm电荷采集距离提高到200μm。其次,首次运行基于金刚石的微带探测器:金刚石带探测器在信号分布峰值处实现了 50:1 的信噪比,最可能的电荷信号为 5000 e 。轨迹预测的误差在 12 μm 和 16 μm 之间,对于低于 1000 e 的信号阈值,探测器效率通常接近 100%。第三个结果是 CVD 钻石的不均匀性扩大了信号分布。这并不奇怪,因为 CVD 钻石是多晶的。第四个要点是 CVD 钻石的辐照,这是首次使用质子、中子和介子进行辐照,其剂量部分高于大型强子对撞机的预期剂量。这里检查的钻石样品具有抗辐射性,具体取决于颗粒类型和剂量。我作为 CERN ATLAS/SCT 小组的成员在探测器研究项目 RD42 中开展了这项工作。
f q / a(x q),f q / b(x q):Parton分布函数(PDFS)表示概率密度,以在Hasdron b中找到具有动量分数x q的夸克q,而具有动量分数x q,具有动量分数x。
金属添加剂制造技术正在迅速成为最苛刻的工业应用的先进技术投资组合中不可或缺的一部分。这些过程能够通过以逐层的方式沉积组成材料来制造具有近网状形状质量的三维组件。这种制造方法比常规制造方法具有许多优势,包括增强的设计灵活性,减少生产成本和交货时间,快速原型制作以及修复受损零件的可能性。近年来,对具有改善性能特征的新型加速器组件的需求不断增长,整合了诸如漂移管和内部冷却通道之类的结构,这促使了粒子加速器领域中添加剂制造的探索。播放频率组件,光束截距设备和真空系统已使用各种金属材料和添加剂制造技术进行了原型,证明了与初步测试中常规制造的对应物相当的性能水平。然而,在典型的加速器应用程序典型条件下,没有既定的资格协议以及添加性生产零件的不确定可靠性对将添加剂制造过程整合到这些组件的制造实践中构成了重大挑战。本文对粒子加速器中金属添加剂制造的记录应用进行了全面审查,突出了未来改进的收益,挑战和机会。还讨论了用于评估涉及超高真空和强烈电磁场的应用中的添加性制造组件的主要要求和可用的测试设置。
摘要:改善复合电池电极需要精细控制活性材料和电极配方。电化学活性材料通常以微米大小的颗粒的形式出现,通过与周围的导电网络相互作用,可以实现其作为能量交换储层的作用。这里制定了网络演化模型,以解释这些颗粒的电化学活性与机械损伤之间的调节和平衡。通过统计分析LINI 0.8 MN 0.1 CO 0.1 CO 0.1 O 2的阴极中的数千个颗粒,我们发现局部网络异质性导致早期周期中的异步活动,然后粒子组件朝同步行为移动。我们的研究指出了单个颗粒的化学机械行为,并可以更好地设计导电网络,以优化操作过程中所有颗粒的实用性。
对文献的综述深入研究了模糊图,直觉模糊图和中性粒细胞图的能量测量和决策过程之间的复杂相互作用。在图理论中,能量是用于测量结构特性并评估决策模型动力学的关键数量。考虑到涉及决策的上下文中能量测量的理论基础,计算技术和实际应用的理论基础,考虑到模糊,直觉模糊和中性粒细胞图模型所带来的特殊特征。本综述试图为希望使用能量度量的研究人员和从业者提供彻底的理解,以在这些特定图形拓扑结构中综合先前的研究中,以设置这些特定图形拓扑内包含的不确定性。
相互作用的费米式系统的自发对称破坏是多体理论的主要挑战,这是由于新独立散射channels的扩散曾经在对称阶段不存在或退化。一个例子是由哈伯德模型的铁 /抗磁性破碎对称相(BSP)给出的,其中旋转横向和自旋宽量义通道中的顶点与计算能力的随之增加,以增加计算的计算能力。我们将非扰动的两粒子一致的方法(TPSC)传达出Hubbard模型中的磁相(2)磁相,提供了一种有效的方法,具有牢固的相关性。我们表明,在BSP中,易感性的总规则执行必须伴随着修改的间隙方程,从而导致订单参数,顶点校正和保留金色模式的间隙特征的恢复。然后,我们将理论应用于半填充的立方晶格中哈伯德模型的抗铁磁相。我们将双重占用和交错磁化的结果与使用图表的蒙特卡洛获得的结果进行了比较。我们证明了verx校正在降低希格斯在自旋长态敏感性中的准粒子激发差距方面的核心作用,从而产生了可见的希格斯模式。
图1胰腺成像发现(a)淀粉酶高度时的对比CT:在内部观察到晦涩,增大,较差的对比区域(箭头),晦涩的直径为40 mm,部分胰腺导管在内部观察到部分胰腺。同一位点在早期层中有效较小,并且在后期逐渐增加。 (b)Pembrolizumab最终给药后5个月对比CT扫描:胰腺尾巴尾巴的改善(箭头)。 (c)MRCP:胰腺头部的普通胆管被狭窄(箭头),并在上游膨胀。主要的胰管在胰腺头上看不到,而是在胰腺体内膨胀。 (d)EUS:胰体具有低回波区域,直径为12.9 x 9.5毫米(箭头)。 (e)EUS:在25.3毫米的胰腺尾巴(箭头)的25.3毫米内有一个低回波区域。 FNA是从同一地点经频道进行的。
代数方式:克利福德、海森堡和狄拉克对量子基础的遗产。BJ Hiley。2024 年 3 月 1 日摘要。罗杰·彭罗斯两周前的演讲得出结论,广义相对论(等效原理)和量子力学(叠加原理)的基本原理之间的冲突导致了两个现实,一个是经典的,一个是量子的。该论点基于薛定谔图景。在这次演讲中,我着手表明,如果使用海森堡图景,那么只有一个现实。论证从海森堡群结构开始,该结构具有经典和量子域的基本正交和辛对称性。克利福德认识到群在古典物理学中的作用,它在产生众所周知的正交泡利、狄拉克和彭罗斯扭子代数方面起着根本性的作用。辛对称性隐藏在冯·诺依曼的一篇被忽视的论文中,而冯·诺依曼实际上发现了 Moyal 星积代数。冯·诺依曼的论文导致了 Stone-von Neumann 定理,该定理表明,各种图像、薛定谔、海森堡、相互作用等在幺正变换下是等价的。我将展示 Bohm 版本的非相对论薛定谔方程是如何从星积代数中产生的。该乘积必然会引入一种新的能量质量,即“量子势能”,DeWitt (1952) 表明其几何起源与标量曲率张量有关。该结构揭示了共形重标度出现背后的原因,希望能够更好地理解静止质量问题。
