成簇的规则间隔短回文重复序列 (CRISPR) 相关 (Cas) 系统是一种通过 DNA 修复机制进行位点特异性基因破坏、修复和基因组 DNA 修饰的技术,有望成为治疗传染病和遗传疾病的基本治疗策略。对于临床应用,基于非病毒载体的 CRISPR/Cas 核糖核蛋白 (RNP) 递送非常重要,但递送效率低和缺乏实用的制造方法仍然是一个问题。我们在此报告了一种基于脂质纳米颗粒 (LNP) 的 Cas RNP 递送系统的开发,该系统基于优化设计的单链寡核苷酸 (ssODN),可实现高效的体内基因组编辑。序列特异性 RNP-ssODN 复合物的形成被发现对于 RNP 的功能性递送很重要。此外,sgRNA 和 ssODN 之间的熔化温度 (Tm) 对体内基因敲除效率有显著影响。具有高 Tm 的 ssODN 导致有限的敲除 (KO) 活性,而接近室温的 ssODN 显示出最高的 KO 活性,这表明 RNPs 的细胞质释放非常重要。连续两次静脉注射 Tm 优化的配方分别在 DNA 和蛋白质水平上实现了约 70% 和 80% 的转甲状腺素蛋白 KO,且没有任何明显的毒性。这些发现对安全的体内 CRISPR/Cas RNP 递送技术的开发及其在基因组编辑疗法中的实际应用具有重要贡献。
摘要:尽管过去几十年来,纳米药物在癌症治疗方面得到了广泛的研究,但目前只有少数纳米药物获得批准并进入市场,这使得该领域在临床应用中的代表性很差。已经确定了需要优化才能成功转化纳米药物应用的关键研究差距,但尚未得到解决;其中,对治疗药物释放模式的控制不足是最重要的。为了解决目前使用的纳米药物的这些问题(例如,爆发释放、全身释放),目前正在研究设计和制造纳米药物的不同策略,以便更好地控制治疗药物的释放。刺激响应特性和延长药物释放已被确定为纳米药物的有效方法,本文将对此进行讨论。最近,智能缓释纳米粒子已被成功设计成可以安全有效地递送具有不同动力学特征的治疗药物,使其有望用于许多药物递送应用,特别是癌症治疗。本综述讨论了智能缓释纳米颗粒的最新进展,重点介绍了聚合物纳米技术的设计策略和性能。目前在
新的光学特性在光热疗法、比色传感、生物成像和光电子学中具有潜在的应用。[1–8] 在过去二十年中,随着 GNR 合成方法的不断改进,[9,10] 人们开发出了许多用于排列和组装 GNR 的技术,从而获得了新的光学特性。[11] GNR 具有纵向和横向表面等离子体共振 (LSPR 和 TSPR),当光的电场分别沿长度和直径方向取向时,会激发这些共振。LSPR 比 TSPR 更强烈,LSPR 的波长取决于纳米棒的长宽比,从而可以调谐到近红外光谱。 GNR 的取向可以选择性地激发 LSPR 或 TSPR,目前已通过拉伸聚合物薄膜[12–14] 静电纺丝聚合物纤维[15,16] 控制蒸发介导沉积[17,18] 模板沉积[19–23] 皱纹辅助组装[24] 机械刷[25] 和液晶分散[26–31] 等方法实现。尽管其中一些取向技术可以提供高度有序性,但利用施加的磁场或电场对分散在液体中的 GNR 进行动态取向的能力因其速度和可逆性而颇具吸引力。利用电场对 GNR 进行取向,
在生物基聚酯或聚乙二醇作为生长控制剂的情况下,在温和条件下合成了导电配位聚合物 Ni(tto) 的纳米粒子。使用聚酯时,可以观察到粒子的聚集体,而使用聚乙二醇时则可以获得分散良好的纳米粒子。事实上,当 Ni 2+ /聚乙二醇的重量比为 0.031 时,透射电子显微照片证明分散粒子的尺寸在 3 - 10 nm 范围内。纳米粉末的红外光谱显示 1100 - 1190 cm −1 范围内有两种 CS 拉伸模式,证实了与镍中心配位的四硫代草酸酯配体的存在。在聚乙二醇存在下制备的纳米粉末的室温电导率约为 0.8 S∙cm −1 ,对于四硫代酯基聚合物来说这是一个不错的值。最后,对分散良好的 Ni(tto) 粒子进行磁化率测量,在较大的温度范围内证实了居里-外斯定律。此外,低温测量将证实 Ni(tto) 聚合物链内镍原子之间的链内或链间相互作用。关键词
该器件设计由两组铝 IDT 组成,放置在具有 128° YX 切口的铌酸锂基板上。作为初步步骤,基于器件的几何周期 200 μm,模拟了器件的缩小单元域。模态分析确定了瑞利波的共振频率,该频率用于后续的谐波研究。两组 IDT 在该频率下受到激励,并分析了由此产生的驻波模式。还检查了器件在共振频率下的导纳。在将模型扩展到完整器件之前,进行了时间相关分析以研究波产生的瞬态阶段。
摘要:结直肠癌 (CRC) 仍然是全球重大的健康负担,这促使人们需要更有效、更有针对性的治疗策略。基于纳米粒子的药物输送系统已成为一种有前途的方法,可以解决传统化疗的局限性,具有更高的特异性、更低的全身毒性和更好的治疗效果。本文深入回顾了纳米粒子作为 CRC 治疗中靶向药物输送载体的最新进展。它涵盖了各种纳米粒子类型,包括脂质体、聚合物纳米粒子、树枝状聚合物和介孔二氧化硅纳米粒子 (MSN),重点关注它们的设计、功能化和作用机制。本综述还研究了这些技术的临床转化所面临的挑战并探索了未来的方向,强调了基于纳米粒子的系统彻底改变 CRC 治疗的潜力。
韩国仁川自由经济区 — IFEZ — 艺术中心的新音乐厅的设计正在进行中。该音乐厅将成为亚洲爱乐乐团的所在地。它有 1,700 多个座位,包括 150 个合唱团。将采用葡萄园座位安排,但舞台区域周围的座位将最小化,以形成坚固的舞台围墙。每个座位区都设计有侧壁,以增加声学亲密度。侧壁之间的平均宽度设计为小于 15 米,每个座位都安排在距离最近侧壁 7.5 米以内。所有侧壁都设计为倾斜的,以引导第一次反射并改善观众区的空间印象。扩散器功能性地安装在舞台源的有效反射表面上。通过计算机模拟和比例建模研究设计考虑因素。
1美国新罕布什尔大学,美国新罕布什尔州,美国新罕布什尔州03824,美国电子邮件:nschwadron@unh.edu 2美国普林斯顿大学天体物理科学系,新泽西州普林斯顿大学,美国新泽西州08544,美国3加利福尼亚州科技研究所,美国加利福尼亚州Pasadena,美国加利福尼亚州91125年,美国4号大学,美国4号大学。 California at Berkeley, Berkeley, CA 94720, USA 6 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA 7 Goddard Space Flight Center, Greenbelt, MD 20771, USA 8 University of Arizona, Tucson, AZ 85721, USA 9 Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723, USA 10 BWX Technologies,Inc,Inc,弗吉尼亚州林奇堡,24504,美国11密歇根大学,安阿伯,密歇根州安阿伯市,48109,美国12天文学,天体物理学,空间应用和雅典国家观察员的遥感研究所。Pavlou和I. Metaxa,15236 Penteli,希腊13号特拉华大学,纽瓦克,19716年,美国14 JET PREPULSION LABORATORA,加利福尼亚理工学院,帕萨迪纳,加利福尼亚州91109,美国,
摘要:多形性胶质母细胞瘤 (GBM) 是最常见的恶性脑肿瘤,与长期生存率低有关。针对 GBM 开发的纳米粒子 (NPs) 是一种有前途的策略,可通过增强活性分子的脑输送并减少脱靶效应来改善当前的治疗方法。特别是,NPs 在跨血脑屏障 (BBB) 和特定于 GBM 细胞受体、通路或肿瘤微环境 (TME) 的化疗药物靶向输送方面具有很高的潜力。在这篇综述中,我们探讨了向 GBM 输送药物的最新策略。主要关注的是表面功能化对于 BBB 穿越和肿瘤特异性靶向的重要性。我们对用于靶向特定癌细胞受体和 TME 或干扰 GBM 信号通路的各种基于配体的方法进行了批判性分析。尽管 NP 在临床环境中的应用日益广泛,但仍需要新的配体和表面表征方法来优化合成,以及预测其体内行为。专家就这项研究的未来以及创建和表征功能性 NP 系统以改善 GBM 靶向性方面仍缺少什么给出了意见。
摘要:顺铂是一种常用的抗癌药物,是第一个铂基抗癌药物。顺式结构使配位复合物能够共价结合一条或两条 DNA 链,从而使 DNA 链交联,导致细胞以程序性方式死亡。顺铂以盐水形式静脉输注用于治疗实体恶性肿瘤。抗癌药物通常具有多种副作用,但将药物封装在合适的宿主材料中可最大限度地减少副作用,同时由于药物仅在靶标处缓慢释放而提高药物的功效。本研究旨在开发一种简单但有效的机制,利用强制水解法将二水合醋酸锌与去离子水在二乙二醇 (DEG) 介质中进行反应来制备多孔氧化锌纳米颗粒 (PZnO NPs)。然后用扫描电子显微镜 (SEM)、能量色散 X 射线分析 (EDX)、傅里叶变换红外光谱 (FT-IR)、粒度分析和粉末 X 射线衍射 (PXRD) 对合成的 PZnO NPs 进行表征。通过 X 射线荧光 (XRF)、SEM、EDX 和 FT-IR 研究证实顺铂被封装在多孔氧化锌纳米粒子内。我们的结果表明,合成的纳米粒子具有六方纤锌矿结构,这已通过 PXRD 证实。通过光散射测定的平均粒度为 52.4 ± 0.1 nm SEM 图像显示具有聚集颗粒的多孔球形形态。顺铂封装产品的 XRF 数据显示 Pt:Cl 比为 1:2,表明顺铂封装没有任何碎裂或其他化学变化。 FT-IR 数据也表明封装产品中存在 NH 3。通过测量 Pt 释放量与时间的关系,研究了抗癌药物顺铂在 PZnO NPs 中的封装情况及其 pH 值对药物从 PZnO NPs 中释放的依赖性,测量方法为使用电感耦合等离子体原子发射光谱法 (ICP-AES) 在 λ max 265.94 nm 处进行。发现顺铂在 PZnO NPs 中的封装效率为 50.52%。在 pH 为 4.0、5.0、6.0、7.0 和 8.0 的醋酸盐/磷酸盐缓冲液中,前 7 小时内从 PZnO NPs 中释放的顺铂百分比 < 6.30%。