图 2。1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 涡轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非亨德里纳发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示颗粒如何完美地呈球形并倾向于相互附着(Lethabo 发电站)。10 图 2.5:显微照片显示从最小颗粒到最大球体的 100µm 以下尺寸范围。形状怪异的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示尺寸范围 > 100µm 的颗粒。除了球体外,这里还可以看到更多不规则颗粒,这些球体是半燃煤或炭的大颗粒(Lethabo 发电站)。11 图 3。1:A/SI 304 不锈钢和碳钢的损耗与温度的关系,注意两种材料的损耗峰值的位置和大小 [BJ。23 图 3。2:两种不同钢的损耗与温度的关系,无论粒子撞击速度如何,其峰值损耗都发生在同一温度下 [51}。23 图 3。3:侵蚀主导行为状态的定位和向腐蚀主导行为的转变 [BJ 。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。28 图 3.5:侵蚀速率与涂层厚度的图表显示随着涂层厚度的增加,抗侵蚀性增加 [73] 37 图 3。6:Shui 等人的图表清楚地说明了随着 ~~fy ~ 的增加,侵蚀速率呈增加趋势
- 传代水平 - 血凝素和神经氨酸酶的特性 - 分析方案(包括种子批次的测试结果)* 3.2.S.2.4 关键步骤和中间体的控制 3.2.S.2.5 工艺验证和/或评估 - 单价批量: - 生产工艺菌株的具体变化 - 关键生产步骤的验证(新菌株) 1. 灭活 2. 分裂效率 3.2.S.3 特性(特性研究的选择,如粒度分布、聚集体的存在等) 3.2.S.4.1 规范(表格格式的已批准规范的副本) 3.2.S.4.2 分析程序 3.2.S.4.3 分析程序的验证(新菌株的 SRD 测试验证) 3.2.S.4.4 单价批量的批次分析结果:来自新主菌株的每个工作种子批次的前三个单价批量的结果(包括神经氨酸酶测试)新菌株的种子批次 - 每个工作种子批次均来自先前批准的主种子批次,其中工作种子批次的制备程序与批准的程序不同 3.2.S.7 药物物质:稳定性(活性物质的稳定性测试:使用一年以上的单价散装的结果)3.2.P.1 成分 3.2.P.2.2.1 药物开发:配方开发(实际配方(新季节菌株)和如果已要求临床试验来支持“年度”更新,则提供临床试验中使用的批次分析证书(如有)(第一步或第二步提交)3.2.P.3.2 批次配方(实际配方)3.2.P.5.1 规格(以表格形式复制批准的规格和常规测试分析方法)3.2.P.5.3 分析程序的验证;对新菌株进行 SRD 测试验证(使用三价散装或药物产品)3.2.P.8 药物产品:稳定性 - 上一季的稳定性数据 - 稳定性承诺 - 最终批次的批准后稳定性方案稳定性
摘要:作为热化学能存储领域研究的一部分,本研究旨在调查奥地利三家不同纸浆和造纸厂的流化床反应器产生的三种粉煤灰样品作为热化学能 (TCES) 和 CO 2 存储材料的潜力。 通过不同的物理和化学分析技术分析了选定的样品,例如 X 射线荧光光谱 (XRF)、X 射线衍射 (XRD)、粒度分布 (PSD)、扫描电子显微镜 (SEM)、电感耦合等离子体原子发射光谱 (ICP-OES) 和不同气氛 (N 2 、CO 2 和 H 2 O/CO 2 ) 下的同步热分析 (STA)。 为了评估环境影响,还进行了浸出试验。 通过 XRF 分析验证了 CaO 作为 TCES 的有希望的候选者的含量,其范围为 25–63% (w/w)。 XRD 结果表明,所有粉煤灰样品中的 CaO 均以游离石灰(3-32%)、方解石(21-29%)和硅酸盐的形式存在。STA 结果表明,所有粉煤灰样品均能满足 TCES 的要求(即充电和放电)。所有样品都进行了三次循环稳定性测试,结果表明在前三个反应循环中转化率有所降低。根据 STA 结果,所检查样品的能量含量高达 504 kJ/kg。在 CO 2 /H 2 O 气氛中,由于这些样品中已经存在游离石灰(CaO),因此在第一次放电步骤中,两种粉煤灰样品可以释放更多的能量(~1090 kJ/kg)。基于直接法和干法,这些粉煤灰样品的 CO 2 储存容量在每吨粉煤灰 18 至 110 kg 之间。浸出试验表明,所有重金属均低于奥地利垃圾填埋条例的限值。可以说,通过 TCES 和 CO 2 封存来增值纸浆和造纸工业的粉煤灰是可行的。然而,仍需进行进一步的研究,例如循环稳定性改进、系统集成和生命周期评估 (LCA)。
AF 后过滤器 SQ 蒸汽质量 BD 排污 SQA 蒸汽质量分析仪 BFW 锅炉给水 TAH 总酸化硬度 BIW 水中沥青 TDS 总溶解固体 BS&W 基本沉积物和水 TOC 总有机碳 BW 反冲洗 TOE 技术操作范围 bpcd 每日历天桶数 TOI 总无机碳 COSIA 加拿大油砂创新联盟 TPH 总石油烃 CPF 中央处理设施 TSS 总悬浮固体 CSS 循环蒸汽刺激 TST 管壁温度 CZ 澄清区 TQM 热质量流量计 DCS 分布式控制系统 TWT 管壁温度 EB 乳化破乳 UA 传热系数 FAC 流动加速腐蚀 UT 超声波检测 FTIR 傅立叶变换红外检测 USGPM 美国加仑/分钟 GHG 温室气体 WLS 温石灰软化 HLS 热石灰软化 WOR 水油比 HPSS 高压蒸汽分离器 WTDC 水技术开发中心 H&S 健康与安全 Y'x'TP 第 'x' 年测试计划 ILM 界面液位测量 KPI 关键绩效指标 LOI 点火损失 MagOx 氧化镁 MW 分子量 NDP 核密度分析仪 NF 纳滤 NIR 近红外传感器 OPEX 运营费用 OIW 水中油 ORF 除油过滤器 OTSG 直流蒸汽发生器 PSD 粒度分布 PW 采出水 PWC 采出水冷却器 REB 反相破乳器 RMZ 快速混合区 RT 射线照相检测 RTD 电阻温度探测器 SAGD 蒸汽辅助重力泄油 SMZ 慢速混合区 SOR 蒸汽油比
摘要:生命微生物的给药是特别感兴趣的,就益生菌的微生物提供了对患者的健康益处的益生菌微生物。有效剂型需要保留微生物活力,直到给药为止。可以通过干燥来提高存储稳定性,并且由于其易于给药和良好的患者依从性,片剂是一种特别有吸引力的最终固体剂型。在这项研究中,研究了通过流体床喷雾剂干燥酿酒酵母的酿酒酵母,因为益生菌的糖果疗法是多种多样的。流化的床颗粒可以比一方面的冻干更快地干燥,另一方面比喷雾干燥更高,这是两种主要使用的微生物生命干燥的技术。酵母细胞悬浮液喷涂到普通片剂赋形剂的载体颗粒上,即磷酸二氨基二硫酸二酸酯(DCP),乳糖(LAC)和微晶纤维素(MCC)。测试了不同的保护剂,例如单,二糖和多糖,但也测试了脱脂奶粉和一只醛醇;从其他干燥技术中知道,它们本身或化学相似的分子可以稳定生物结构,例如细胞膜,从而提高脱水过程中的生存。随着海藻糖和脱脂奶粉的合并使用,生存率是使用保护添加剂的300倍。除了这些配方方面,还考虑了过程参数(例如入口温度和喷雾速率)的影响。颗粒产物的粒度分布,水分含量和酵母细胞的生存能力进行了表征。已经表明,微生物的热应力尤其重要,例如,可以通过降低入口温度或增加喷雾速率来减少。但是,诸如细胞浓度之类的制剂参数也影响了生存。结果用于指定在流体化床颗粒过程中微生物存活的影响因素,并得出它们的联系。颗粒,并评估了微生物的存活,并将其与达到的片剂拉伸强度联系起来。使用LAC实现了整个考虑过程链中微生物的最高生存率。
Aurubis是欧洲最大的铜生产商,研究了泡沫浮选从浸出的残留物中恢复石墨的,该残留物含有含有专利的碳材料,尚待黑色质量质量贴胶流量表产生的碳材料。已经尝试了多年黑质量(BM)的浮选,尤其是作为“原始黑色质量”的前浸水材料分离步骤,目的是减少下游处理的材料质量。然而,由于有机电解质材料的夹带和剩余的涂层,呈现NMC-CATHODE材料和残留的Cu/Al Foil颗粒疏水,通常约有10-50%的有价值金属向石墨浓缩物报告(Vanderbruggen,2022)。尝试通过旨在消除残留粘合剂和创建新鲜表面的损耗步骤(高剪切)进行改进的尝试取得了成功,但这些有价值的材料报告仍然很大,但仍有大量的材料报告(Vanderbruggenet。Vanderbruggenet。al。,2022)。其他人试图使用加热步骤消除粘合剂,500 c热解,多达17%的有价值的材料仍向随后的浮选浓度报告(Zhang,et。al。,2019年)。考虑到这一挑战,Aurubis选择在其湿度铝流量表产生的石墨残基上追回石墨恢复,该残基首先开创了锂,并提高了电池材料的高回收率,即阴极活动材料(CAM)-EP4225697 B1。分别可以在图1和表1中看到典型的粒度分布(PSD)和该残基的组成,并分别可以看到标记为批次1到3的残基。富含石墨的残基,即Aurubis的浮选饲料的p80约为20µm,碳含量为35-40%,典型电极成分(例如锂金属氧化物(LMO)LMO)LI,Ni,Ni,Co和Mn的总数为1%。高石膏含量为10-12%,是Aurubis过程中使用的湿法流膜流量表步骤的结果。此石墨残基特性(大小和组成)使其成为浮选的理想选择。实际上,在浮选饲料上进行的矿物解放分析(MLA)表明,大约70%的碳被完全释放,25%的二元二元锁定主要用石膏锁定,只有5%的三元颗粒主要与铝和铜颗粒相关。
图 2.1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 汽轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非 Hendrina 发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示了颗粒如何呈现完美的球形并且倾向于相互粘附(Lethabo 发电站)。10 图 2.5:显微照片显示了从最小颗粒到最大球体的尺寸范围,其尺寸范围都在 100µm 以下。形状畸形的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示了尺寸范围 > 100µm 的颗粒。这里除了球体之外,还可以看到更多不规则颗粒,这些球体是半燃煤或焦炭的大颗粒(Lethabo 发电站)。11 图 3. 1:A/SI 304 不锈钢和碳钢的损耗与温度关系,注意两种材料损耗峰值的位置和大小 [BJ。23 图 3. 2:两种不同钢的损耗与温度关系,无论粒子撞击速度如何,它们的峰值损耗都发生在同一温度下 [51}。23 图 3. 3:侵蚀主导行为状态的定位以及向腐蚀主导行为的转变 [BJ。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。 28 图 3.5:侵蚀速率与涂层厚度的关系图,显示随着涂层厚度的增加,抗侵蚀性能增强 [73] 37 图 3.6:Shui 等人的图表清楚地说明了随着温度的增加,侵蚀速率呈上升趋势。 图 3.7:氮化和碳化试样的侵蚀速率与温度的关系图,显示温度对侵蚀速率的影响较弱 [78] 。 40 图 3.8:几种爆炸枪涂层的侵蚀速率与温度的关系图,显示侵蚀速率对温度的依赖性更强 [BO] 41 图 4.1:高温侵蚀磨损装置图。编号特征(1)-(7)与装置照片中的特征相对应。 46 图 4.2:腐蚀装置的照片:(1)气体火焰,(2)预热室,(3)腐蚀进料器,(4)加速管。 47 图 4.3:(a)测试部分,附接到室盖板上,以便于测试后快速取出样品。(b)测试部分插入的样品室(5)。48 图 4.4:冷却部分(6)与旋风分离器和排气管(7)相连。可以看出排气管如何有效增加旋风出口管的高度。 49 图 4.5:显示重要尺寸的旋风图。 64 图 4. 6:200°G 运行期间仪器上各个位置的温度与时间的关系图。 67 图 4. 7:500°G 运行中,仪器上不同位置的温度与时间的关系图。 68 图 4.8:几种不同空气供应压力下样品最终温度与气体调节器供应压力的关系。引用的空气压力是压力调节器上显示的单位,其中 1 bar= 1 个大气压以上,即 2.026x10 5 Nm· 2 • 69 图 4.9:106-125 µm SiC 颗粒在 2.5 kg .m· 通量下颗粒和气体速度与供应压力的关系
图 2.1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 汽轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非 Hendrina 发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示了颗粒如何呈现完美的球形并且倾向于相互粘附(Lethabo 发电站)。10 图 2.5:显微照片显示了从最小颗粒到最大球体的尺寸范围,其尺寸范围都在 100µm 以下。形状畸形的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示了尺寸范围 > 100µm 的颗粒。这里除了球体之外,还可以看到更多不规则颗粒,这些球体是半燃煤或焦炭的大颗粒(Lethabo 发电站)。11 图 3. 1:A/SI 304 不锈钢和碳钢的损耗与温度关系,注意两种材料损耗峰值的位置和大小 [BJ。23 图 3. 2:两种不同钢的损耗与温度关系,无论粒子撞击速度如何,它们的峰值损耗都发生在同一温度下 [51}。23 图 3. 3:侵蚀主导行为状态的定位以及向腐蚀主导行为的转变 [BJ。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。 28 图 3.5:侵蚀速率与涂层厚度的关系图,显示随着涂层厚度的增加,抗侵蚀性能增强 [73] 37 图 3.6:Shui 等人的图表清楚地说明了随着温度的增加,侵蚀速率呈上升趋势。 图 3.7:氮化和碳化试样的侵蚀速率与温度的关系图,显示温度对侵蚀速率的影响较弱 [78] 。 40 图 3.8:几种爆炸枪涂层的侵蚀速率与温度的关系图,显示侵蚀速率对温度的依赖性更强 [BO] 41 图 4.1:高温侵蚀磨损装置图。编号特征(1)-(7)与装置照片中的特征相对应。 46 图 4.2:腐蚀装置的照片:(1)气体火焰,(2)预热室,(3)腐蚀进料器,(4)加速管。 47 图 4.3:(a)测试部分,附接到室盖板上,以便于测试后快速取出样品。(b)测试部分插入的样品室(5)。48 图 4.4:冷却部分(6)与旋风分离器和排气管(7)相连。可以看出排气管如何有效增加旋风出口管的高度。 49 图 4.5:显示重要尺寸的旋风图。 64 图 4. 6:200°G 运行期间仪器上各个位置的温度与时间的关系图。 67 图 4. 7:500°G 运行中,仪器上不同位置的温度与时间的关系图。 68 图 4.8:几种不同空气供应压力下样品最终温度与气体调节器供应压力的关系。引用的空气压力是压力调节器上显示的单位,其中 1 bar= 1 个大气压以上,即 2.026x10 5 Nm· 2 • 69 图 4.9:106-125 µm SiC 颗粒在 2.5 kg .m· 通量下颗粒和气体速度与供应压力的关系
图 2。1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 涡轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非亨德里纳发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示颗粒如何完美地呈球形并倾向于相互附着(Lethabo 发电站)。10 图 2.5:显微照片显示从最小颗粒到最大球体的 100µm 以下尺寸范围。形状怪异的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示尺寸范围 > 100µm 的颗粒。除了球体外,这里还可以看到更多不规则颗粒,这些球体是半燃煤或炭的大颗粒(Lethabo 发电站)。11 图 3。1:A/SI 304 不锈钢和碳钢的损耗与温度的关系,注意两种材料的损耗峰值的位置和大小 [BJ。23 图 3。2:两种不同钢的损耗与温度的关系,无论粒子撞击速度如何,其峰值损耗都发生在同一温度下 [51}。23 图 3。3:侵蚀主导行为状态的定位和向腐蚀主导行为的转变 [BJ。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。64 图 4。67 图 4。28 图 3.5:侵蚀速率与涂层厚度的关系图,显示随着涂层厚度的增加,抗侵蚀性也随之增加 [73] 37 图 3。6:Shui 等人的图表清楚地说明了侵蚀速率随~~fy ~ 图 3 的增加而增加的趋势。7:氮化和碳化样品的侵蚀速率与温度的关系图,显示温度对侵蚀速率的影响较弱 [78] 。40 图 3.8:几种爆炸枪涂层的侵蚀速率与温度的关系图,显示侵蚀速率对温度的依赖性更强 [BO] 41 图 4.1:高温侵蚀磨损装置图。编号特征 (1) - (7) 与装置照片中的特征相对应。46 图 4.2:侵蚀装置的照片:(1)气体火焰,(2)预热室,(3)侵蚀进料器,(4)加速管。47 图 4.3:(a)测试部分,附接到室盖板上,以便于测试后快速取出样品。(b) 测试部分插入的样品室 (5)。48 图 4.4:冷却部分 (6) 连接到旋风分离器和排气管 (7)。可以看出排气管如何有效增加旋风出口管的高度。49 图 4.5:旋风分离器的示意图,显示重要尺寸。6:200°G 运行条件下,仪器上各个位置的温度与时间的关系图。7:500°G 运行条件下,仪器上各个位置的温度与时间的关系图。68 图 4.8:几种不同空气供应压力下,样品最终温度与气体调节器供应压力的关系图。引用的气压是压力调节器上显示的单位,其中 1 bar= 高于大气压 1 个大气压,即2.026x10 5 N.m· 2 • 69 图 4.9:106-125 µm SiC 颗粒在 2.5 kg .m· 通量下的颗粒和气体速度与供应压力的关系
宾汉姆峡谷矿周围被 60 多亿吨(54 亿吨)废石所包围,这些废石是 1903 年至今露天采矿过程中产生的,废石面积约为 2,000 公顷。废石堆从顶部到底部厚度超过 300 米。1930 年至 2000 年,废石堆的选定部分使用基于硫酸铁的浸出剂主动浸出以提取铜,而其他部分仅接受流星浸出。从 2011 年至今,力拓肯尼科特公司研究了宾汉姆峡谷矿废石堆水质的演变及其地球化学控制因素。在此项目中,通过现场测井和 13 个成对的钻孔仪器对废石堆进行了详细描述;在 13 个地点中的 12 个,钻孔穿透了垃圾场的整个深度,穿过了采矿前的土壤接触面,进入了基岩。钻孔深度接近地表以下 275 米,使用旋转声波钻孔方法,以便 (1) 回收岩心和 (2) 测量近现场特性。钻孔的现场记录包括统一土壤分类系统描述、碎屑岩性、相对氧化、糊状物 pH 值和地球物理方法(陀螺仪、温度、中子和伽马)。对钻孔岩心的岩土特性(密度、粒度分布、含水量、塑性指数和极限、直接和块体剪切)进行了分析,通过扫描电子显微镜 (QEMSCAN) 对矿物进行了定量评估,改进了酸碱核算 (ABA),改进了合成沉淀浸出程序 (SPLP),通过 Corescan 进行了高光谱分析,并采集了水样(如果遇到)。钻孔内安装的仪器包括渗水仪、热敏电阻节点、直接温度传感 (DTS) 光纤电缆、时域反射 (TDR) 剪切电缆、气体(氧气、二氧化碳)测量管和振线压力计 (VWP)。此外,每个钻孔点都对当地废石表层的氧气消耗进行了多次测量。从钻孔中获取的数据与广泛钻探、矿物学和岩石地球化学评估、水力和示踪剂测试以及 20 年的渗流和水质数据的历史信息(超过 50 年)相关联,以开发一个描述废石堆的水力、地球化学和物理行为的概念模型。废石堆中的黄铁矿和其他硫化矿物因空气的扩散和对流进入而氧化,产生酸性、高总溶解固体的废水,以及在废石中形成的黄钾铁矾,作为储存额外酸性的次生相。主要的空气进入机制是对流,占废石堆中硫化物氧化的 90% 以上。根据废石堆的温度分布和水平衡,地球化学反应造成的水分损失占水预算的很大一部分。1.0 简介力拓肯尼科特宾汉峡谷矿场现有的废石堆占地约 2,000 公顷,包含超过 60 亿吨(5.4 亿吨)的材料。从 1930 年左右开始,人们一直在对废石堆进行浸出以回收铜,直到 2000 年停止浸出。