本手稿对算法信息理论与各个物理学领域的交集的已发表和未发表的材料进行了调查,包括量子力学,治疗方法,牛顿物理学,黑洞和建筑构造理论。如果一个人可以访问停止序列,则信息可以在空格事件之间传递。探索了算法信息与量子测量之间的关系。使用量子力学压缩经典信息没有好处。本手稿介绍了“半古典子空间”的概念,其中可以测量部分信号并可能发生部分信息克隆。令人惊讶的结果之一是,在进行反谐后,绝大多数的非分子量子(纯和混合)状态将导致经典概率而没有算法信息。因此,大多数非量子量子状态将其切成白噪声。至于热力学,引入了算法粗粒和细粒度熵的新定义。在动力学过程中,算法细粒熵函数振荡。小型幻影是常见的,较大的波动更为罕见。粗粒熵被证明是对细粒熵的极好近似。详细介绍了无同步定律,它说随着时间的流逝而演变的单独和孤立的物理系统不能具有同步的热力学算法熵。对于牛顿物理学,引入了一种典型的度量,该测量值在牛顿空间中得分算法的典型性水平。在围绕质量点的轨道过程中,典型性将振荡。此外,不是异国情调的两个轨道不能具有同步的典型度量。黑洞的Kolmogorov复杂性已详细介绍,并描述了其与复杂性/体积对应关系的关系。独立性假设与许多世界理论和构造者理论相抵触。
摘要 - 公制占用图广泛用于机器人导航系统中。但是,当机器人被部署在看不见的环境中时,构建准确的度量图会耗时。可以使用粗图直接在以前看不见的环境中直接导航?在这项工作中,我们提出了粗大地图导航器(CMN),这是一个可以使用不同的粗图在看不见的环境中执行机器人导航的导航框架。为此,CMN解决了两个挑战:(1)新颖而现实的视觉观察; (2)粗图上的误差和错位。为了解决在看不见的环境中的新型视觉观测,CMN了解了一个深刻的感知模型,该模型将视觉输入从各个像素空间映射到本地占用网格空间。为了解决粗图上的误差和未对准,CMN使用预测的局部占用网格作为观测值扩展了贝叶斯过滤器,并直接在粗图上保持信念。使用最新信念,CMN提取了全球启发式向量,该向量指导计划者找到本地导航行动。经验结果表明,CMN在看不见的环境中实现了高导航的成功率,明显优于基准,并且对不同的粗图形具有鲁棒性。
微电子技术的进步使得更高的集成密度成为可能,并且目前正在进行机载系统的大规模开发,这种增长遇到了功耗的限制因素。更高的功耗将导致产生的热量立即扩散,从而导致热问题。因此,随着系统温度的升高,系统的总消耗能量将增加。微处理器的高温和计算机系统的大量热能对系统信心、性能和冷却费用产生巨大的问题。处理器消耗的功率主要来自内核数量和时钟频率的增加,这些功率以热量的形式消散,给芯片设计人员带来了热挑战。随着纳米技术中微处理器性能的显着提高,功耗变得不可忽略。为了解决这个问题,本文使用多目标帕累托前沿 (PF) 和粒子群优化 (PSO) 算法来解决高性能处理器的功耗降低问题,以实现功耗作为优先计算,从而减少目标微处理器单元的实际延迟。仿真验证了概念基础以及关节体和电源电压(V th- V DD )的优化,并显示出令人满意的结果。
摘要:数字双技术的最新创新称为认知数字双胞胎(CDT)。这项技术实现的复杂和自主活动有可能改变制造业。在本文中给出了制造中CDT的概述,并检查其主要特征,组件和可能的用途。CDT可以通过结合人工智能,机器学习和知识表示方法来从数据,有关困难环境的原因中学习,并做出明智的判断。纸张涵盖了CDT在智能制造中的优势。因此,本文的目的是评估在其运营和实践中采用CDT的智能制造业。多标准决策(MCDM)是通过基于简单比率分析(MOOSRA)的多目标优化(MOOSRA)来构建软决策模型,这是标准的重要性。该模型可以通过利用不确定性理论,尤其是三角形神经嗜知数字(Trinn)来嘲笑和不完整的信息。此外,Hypersoft Set与Moosra一起使用来对智能制造的替代方案进行排名
摘要。全脑分割是将整个脑体积划分为解剖标记的感兴趣区域 (ROI),是脑图像分析中的关键步骤。传统方法通常依赖于复杂的管道,这些管道虽然准确,但由于其复杂性而耗时且需要专业知识。或者,端到端深度学习方法提供快速的全脑分割,但通常会由于忽略几何特征而牺牲准确性。在本文中,我们提出了一种新颖的框架,将以前由复杂的基于表面的管道使用但被基于体积的方法忽略的关键曲率特征集成到深度神经网络中,从而实现高精度和高效率。具体而言,我们首先训练一个粗略的解剖分割模型,重点关注高对比度组织类型,即白质 (WM)、灰质 (GM) 和皮层下区域。接下来,我们使用 WM/GM 接口重建皮质表面,并计算表面上每个顶点的曲率特征。然后将这些曲率特征映射回图像空间,在那里它们与强度特征相结合以训练更精细的皮质分割模型。我们还简化了皮质表面重建和曲率计算的过程,从而提高了框架的整体效率。此外,我们的框架非常灵活,可以将任何神经网络作为其主干。它可以作为即插即用组件来增强任何分割网络的全脑分割结果。在公共 Mindboggle-101 数据集上的实验结果表明,与各种深度学习方法相比,分割性能有所提高,速度相当。
摘要 — EEG 是一种功能强大且价格实惠的大脑传感和成像工具,广泛用于诊断神经系统疾病(例如癫痫)、脑机接口和基础神经科学。不幸的是,大多数 EEG 电极和系统的设计并不适用于非洲裔人群中常见的粗卷发。这可能会导致数据质量较差,在从更广泛的人群中记录数据后,这些数据可能会在科学研究中被丢弃,并且对于临床诊断,会导致不舒服和/或情绪紧张的体验,在最坏的情况下,会导致误诊。在这项工作中,我们设计了一个系统来明确适应粗卷发,并证明随着时间的推移,我们的电极与适当的编织相结合,可实现比最先进系统低得多(约 10 倍)的阻抗。这建立在我们之前的工作的基础上,该工作表明,按照临床标准 10-20 排列的模式编织头发可以改善现有系统的阻抗。
物种分布模型(SDMS)广泛用于估计物种 - Envi Ronment关系(SERS)并预测跨时空的物种分布。为此,在建模过程开始时选择相关的空间晶粒作为预测变量和响应变量的关键。但是,环境变量通常来自晶粒的大规模气候模型,比响应变量之一更粗糙。这种区域到点的空间未对准会偏向SER伴侣,并危害预测的稳健性。我们使用了一种虚拟物种方法,在不同级别的区域空间空间未对准之间运行模拟,以寻求解决此问题的统计解决方案。我们特别比较了在环境条件下,在不同程度的空间异质性,三个SDMS:A GLM,A GLM,A空间GLM和Berkson误差模型(BEM)中评估的SER估计值和预测性能的准确性,这些空间异质性(Berkson误差模型(BEM))占了细粒度的环境HET在粗粒细胞内的性质。只有BEM准确地估算了从相对粗粒的环境数据(比响应晶粒的50倍),而两个GLM的Ser提供了扁平的Ser。但是,从粗粒数据预测时,这三个模型的表现较差,尤其是在比训练条件更异质的环境中。相反,相对于训练数据集而减少环境的异质性减少了预测性偏见。由于预测是由协变量元数据进行的,因此BEM的预测性能低于两个GLM。因此,标准模型选择方法将无法选择最能估计SER的模型(这里是BEM),这可能会导致对物种分布的环境驱动因素的错误解释。总的来说,我们得出的结论是,由于可以在响应谷物上稳健地估算SER,因此BEM具有巨大的希望,可以克服面积到点的错位。
黑色素瘤是一种最可怕的皮肤癌,死亡率很高,最初是通过临床筛查、皮肤镜分析、活检和组织病理学检查进行目视诊断的。如果诊断和早期治疗延误,就会变得很危险。图像处理技术的最新发展有助于有效地检测黑色素瘤,因为由于病变的细粒度变化,检测黑色素瘤是一项艰巨的工作。本文研究了一种使用粒子群优化人工神经网络分析病变不规则性的新分类程序。在本研究论文中,提取病变的颜色特征并使用 PSO-ANN 分类器进行分类。通过标记假阳性率和真阳性率获得的接收者操作特性在分析计算机辅助诊断系统的诊断潜力方面起着至关重要的作用。应用于 ISIC 数据库的分类技术表明曲线下面积为 0.96853,特异性为 90.0%,灵敏度为 94.07%,准确率为 93.04%。