物种分布模型(SDMS)广泛用于估计物种 - Envi Ronment关系(SERS)并预测跨时空的物种分布。为此,在建模过程开始时选择相关的空间晶粒作为预测变量和响应变量的关键。但是,环境变量通常来自晶粒的大规模气候模型,比响应变量之一更粗糙。这种区域到点的空间未对准会偏向SER伴侣,并危害预测的稳健性。我们使用了一种虚拟物种方法,在不同级别的区域空间空间未对准之间运行模拟,以寻求解决此问题的统计解决方案。我们特别比较了在环境条件下,在不同程度的空间异质性,三个SDMS:A GLM,A GLM,A空间GLM和Berkson误差模型(BEM)中评估的SER估计值和预测性能的准确性,这些空间异质性(Berkson误差模型(BEM))占了细粒度的环境HET在粗粒细胞内的性质。只有BEM准确地估算了从相对粗粒的环境数据(比响应晶粒的50倍),而两个GLM的Ser提供了扁平的Ser。但是,从粗粒数据预测时,这三个模型的表现较差,尤其是在比训练条件更异质的环境中。相反,相对于训练数据集而减少环境的异质性减少了预测性偏见。由于预测是由协变量元数据进行的,因此BEM的预测性能低于两个GLM。因此,标准模型选择方法将无法选择最能估计SER的模型(这里是BEM),这可能会导致对物种分布的环境驱动因素的错误解释。总的来说,我们得出的结论是,由于可以在响应谷物上稳健地估算SER,因此BEM具有巨大的希望,可以克服面积到点的错位。
主要关键词