该系统可执行复杂的点胶模式,点胶线的宽度不同,液滴大小和速度可即时改变。它在一秒钟内可以点胶数百次,并且每滴点胶的重复精度非常高,粘度可达 8,000 mPas。
Gerresheimer 开发了一种用于输送单克隆抗体等生物制剂的新型泵技术。可穿戴的 Sens AIR™ 贴身输送装置可控制不同粘度药物的皮下给药。该装置旨在使患者能够以方便的方式自行给药多达 20 毫升的生物制剂。
独特的管道布局类似于静态混合器几何形状,允许在壳侧实现均匀的熔体流动,并在低剪切速率下以较小的压降为代价在粘性流中形成层流,这对于连续本体聚合特别有用。该过程增强了熔体之间的热传递,并与单位体积极高的表面积完美结合,从而实现了对热传递的精确控制,从而实现了高转化率和持续的高聚合物流量。此外,SMR 的出色径向混合可确保局部浓度和温度梯度的最佳均匀化,同时避免通道、添加剂和催化剂等分布不均或死区。由于没有旋转部件,SMR 设计降低了维护成本以及运营/能源成本。关于粘度,SMR 在广泛的粘度范围内表现出色,使其适用于各种聚合物生产甚至多产品工厂,例如 PLA 和 PCL。在产品切换的情况下,由于其高表面,可以快速完成任何聚合物等级的更改,从而减少不合格产品的数量。
摘要:本研究的重点是三个参数之间的相关性:(1)石墨粒径,(2)石墨与氧化剂的比率(KMNO 4),以及(3)石墨与酸(H 2 SO 4和H 3 PO 4)的比率(H 2 SO 4和H 3 PO 4),具有氧化物氧化物的性质,结构和特性(GO)。相关性是一个挑战,因为由于系统粘度的变化,这三个参数几乎无法彼此分开。石墨颗粒越大,GO的粘度越高。将石墨与KMNO 4的比率从1:4到1:6降低,通常会导致更高的氧化程度和更高的反应产率。但是,差异很小。除最小的颗粒以外,将石墨与酸 - 酸体积比从1 g/60 mL增加到1 g/80 ml,降低了氧化程度,并稍微降低了反应产率。然而,反应的产率主要取决于水的纯化程度,而不是反应条件。GO热分解的较大差异主要是由于块状粒径,而其他参数则较小。
摘要混凝土的主要弱点是它暴露于裂缝中,混凝土结构修复昂贵,尤其是对于基础设施维护而言,很难访问。自我修复混凝土(SHC)在没有人协助的情况下成功治愈骨折的能力,因为它增加了运营寿命并降低了维护费用。本文回顾了自动和自主自我修复混凝土的各种技术和技术。对自主SHC的更多关注,包括封装材料,胶囊几何形状和治愈剂。这是由于其与自动SHC的均匀水合相比,其准确性和更好的愈合能力。聚合物材料在胶囊和愈合剂中均显示出巨大的潜力。因为它们可以满足胶囊的异常需求,其中包括在混合混凝土混合和变脆时具有柔韧性,因此愈合剂的粘度必须足够低,以使其从胶囊中流出并填充微小的裂缝。相比之下,如果粘度太低,则愈合剂要么从骨折中渗出,要么被混凝土基质的孔吸收。
将生物聚合物用作化学洪水中合成聚合物的一种替代方法,以增强石油回收(EOR),由于其能够承受恶劣的储层条件和环境友好的能力,因此变得非常重要。在这种情况下了解生物聚合物的行为对于确定它们表现出一致的行为还是因一种情况而变化至关重要。This study focuses on evaluating the rheological properties and core flooding outcomes of three specific biopolymers, namely hydroxyethyl cellulose (HEC), xanthan gum, and guar, under reservoir conditions of 212°F, the salinity of 135,000, and pressure of 2200 psi where the previous works lacked to examine the behavior of these biopolymers under such combined conditions.的发现表明在这些条件下生物聚合物流变特性的不均匀行为,突出了在EOR过程中使用它们之前对其进行评估的关键需求。在储层条件下,压力的增加导致黄原胶的粘度降低,但瓜的粘度提高。HEC的粘度最初随着压力的增加而降低,但随后显示出增加。此外,在储层条件下,所有生物聚合物都显示出剪切稀疏和弱凝胶行为(存储模量/损失模量> 0.2)。使用实际Bahariya地层核心的核心洪水实验显示,黄原,瓜尔和HEC恢复了22%,8.9%和1.8%的残留油饱和度,分别为6%,2.7%和0.6%的原始油。这表明黄原胶在恶劣的储层条件下在测试的生物聚合物中具有出色的流变特性和油回收率。
电池电池组装的第一步是悬浮液的沉积,该悬浮液中包含活性材料,将材料和聚合物粘合剂在溶剂上引导到铜线或铝制纤维(浆料制备和涂层)上。这是电极的干燥,日历和尺寸。要提供理想的电化学性能,需要密切控制电池电极的多步制造过程。浆液是一个非常复杂的悬浮系统,其中包含高度粘性介质中不同化学物质,尺寸和形状的大量固体颗粒。彻底混合浆料对于同质性至关重要。浆液的流变特性会影响重要属性:浆液稳定性,易于混合和涂料性能,这会影响完成的电极。组成和应用处理条件可能会影响所得悬浮液的流变。密度和粘度量化了流量的性能,并表征样品内的结构程度以及固体或液体样行为主导的程度。在电极制造过程中,进程成分的粘度尤其重要,并且在电池制造过程(例如涂层)中起关键作用。聚合物粘合剂溶液的粘度会影响涂料性能。它影响了粉末分散在其中的便捷性,混合所需的功率和均匀涂层的施用速度。多孔电极理论(PET)提出了通过实验验证的阳性电极密度与锂离子电池细胞整体性能的相关性。高正电极密度的细胞在低电流速率下显示出略高的放电能力,但在高电流速率下,低正极密度的细胞显示出更好的性能。
简介 - 量子霍尔状态的特点是它们对运输系数的精确量化,例如霍尔电导率[1],它反映了系统的拓扑不变性。除了电导率之外,已经确定了对托型和几何形状之间相互作用的更深入的见解。其中,大厅的粘度已成为一个关键的几何传输系数,在绝热变化对系统度量的变化下捕获了量子霍尔状态的响应[2-4]。在二维系统中,如果该区域保持恒定,则此类度量变形等同于复杂结构的变化,对于圆环而言,该模块参数τ=τ=τ1 +iτ2,用τ∈H和h,每半平面上升。因此,霍尔粘度可以理解为复杂结构模量空间上的浆果曲率,该曲率控制了量子霍尔态对τ绝热变形的响应。这种联系是在Avron,Seiler和Zograf [2]的开创性工作中首次建立的,将其与量子霍尔状态的固有几何形状联系在一起。重要的是,相应的无耗散传输系数ηh是由与此曲率相关的第一个Chern数进行量化和确定的[5]。这种洞察力不仅强调了大厅的粘度是二维间隙系统的重要特征,从而破坏了时间反转对称性,而且将其定位为基本的拓扑不变性,以补充霍尔电导率。在[5]中,对几何绝热转运的概念进行了扩展,以对较高属(g> 1)的表面进行,并引入了一种新型的运输系数,即中央电荷[6,7],这是由重力异常引起的。此central电荷量化了量子霍尔对几何变形的普遍响应,将其链接到拓扑和保形场理论不变性。
尽管纳米流体为科学界提供了一些令人鼓舞的结果,但在其在工业中广泛采用之前仍存在一些挑战。一个重大的挑战是纳米流体的稳定性,这可能导致纳米颗粒聚集并影响粘度。超声处理是一种用于将纳米颗粒分散在碱流体中的常见方法。因此,这项工作的主要目的是研究超声处理持续时间和温度对MXENES稳定性和粘度的影响(Ti 3 C 2 T X)/水纳米流体。通过采用三种不同的超声处理持续时间,即60、90和120分钟,配制了含有0.05 wt%mxenes(Ti 3 c 2 t x)/水的纳米流体。Zeta电位值用作其稳定性的指标。与视觉检查结合使用,在纳米流体的配方后的第1、7和30天检查了样品的稳定性。在第1天,在纳米流体中观察到最佳稳定性在各个温度下超声固定90分钟,中等ZETA电位值超过-30 mV。但是,在所有情况下,稳定性随时间的降低。将超声处理持续时间延长至120分钟,导致纳米流体的粘度更高。在某些情况下,从20到60°C的温度变化并未显示出稳定性的相似趋势,这可能表明随温度变化而变化。因此,建议进行更多的研究以获取更多有关纳米流体的信息,例如使用显微镜的表征技术。关键字:mxene nanofluids;超声处理持续时间; Zeta电位也可以通过其他方法(例如整合表面活性剂,变化的pH水平和纳米颗粒浓度)以及修饰纳米颗粒表面和基础流体来提高稳定性。
顶级合成润滑油,由于其经过精心研究的粘度,在正常驾驶条件下有利于节省燃油。因此,它有助于减少二氧化碳排放并保护环境。由于其 ACEA C2 质量等级具有较低的灰分含量(中 SAPS),特别适用于包括颗粒过滤器的最先进发动机。