近年来,对包括微机电系统 (MEMS) 和传感器在内的越来越小的芯片的需求急剧增加。自动驾驶技术等技术正在腾飞,市场对减小封装尺寸和提高移动设备性能的压力也在增加。DDAF 越来越多地被用于这些应用中,以将芯片粘合到基板和其他芯片上。DDAF 可用于切割和芯片粘合工艺,取代了使用两种独立材料来切割和粘合芯片的需求。它由 DAF(芯片粘接膜)和基材组成,DAF 层将小芯片粘合到基板和其他芯片上。然而,传统的 DDAF 在芯片尺寸较小时容易出现转移故障 (TF)。这是一种故障模式,在芯片拾取 (PU) 过程中,DAF 层从芯片背面剥落。导致此问题的根本原因有多种;小型芯片的 DAF 附着面积较小,而为增加芯片强度而使芯片背面光滑,导致 DAF 无法锚定到芯片本身。通过使用具有高熔体粘度的 DAF,使 DAF 能够更好地锚定到芯片上,从而改善了 PU 工艺上的 TF。但是,由于材料无法嵌入到基板上,封装可靠性下降。探索了高基板嵌入抑制 TF 的影响因素。为了探索这些因素,实施了直角撕裂强度方法。在分析数据后,发现了一个抑制 TF 的新参数。该参数与 TF 显示出很强的相关性。开发了一种新的 DDAF,可减轻 PU 过程中的 TF。关键词 刀片切割、切割芯片贴膜、MEMS、直角撕裂强度法、转移失败
用于 MEMS 封装的高柔性芯片粘接粘合剂 Dr. Tobias Königer DELO 工业粘合剂 DELO-Allee 1 86949 Windach,德国 电话 +49 8193 9900-365 传真 +49 8193 9900-5365 电子邮件 tobias.koeniger@delo.de 摘要 大多数 MEMS 封装的芯片粘接材料必须具有高柔性,因为在装配过程和应用过程中的温度变化可能导致热机械应力,这是由于基板、芯片和粘合剂的热膨胀系数不同造成的。热机械应力会导致对应力极为敏感的 MEMS 设备的信号特性失真。在本文中,我们开发了高柔性热固化粘合剂,其杨氏模量在室温下低至 5 MPa (0.725 ksi)。 DMTA 测量表明,在 +120 °C (+248 °F) 温度下储存不会导致粘合剂脆化,而脆化会对 MEMS 封装的可靠性产生负面影响。在 +120 °C (+248 °F) 下储存长达 1000 小时后,杨氏模量没有增加。粘合剂在低至 +100 °C (+212 °F) 的极低温度下固化,从而减少了组装过程中的应力产生。此外,粘合剂具有非常友好的工艺特性。处理时间可以达到一周以上。双重固化选项可在几秒钟内对芯片进行初步光固定。关键词粘合剂、MEMS 封装、应力、芯片粘接、粘合
conjugate and poliovirus vaccine 白喉、破傷風、全細胞性百日咳、 b 型嗜血桿菌混合疫苗 DTP-Hib DTP-Haemophilus influenzae type b conjugate vaccine 白喉、破傷風、全細胞性百日咳、 b 型嗜血桿菌、 B 型肝炎混合疫苗 DTP-Hib-HepB DTP-Haemophilus influenzae type b
摘要 — 计算建模通常用于设计和优化电子封装,以提高性能和可靠性。影响计算模型准确性的因素之一是材料性质的准确性。特别是微机电系统传感器,通常对封装中材料性质的细微变化极为敏感。因此,即使由于样品制备方法或测试技术不同而导致的材料特性测量值出现微小变化,也会影响用于设计或分析传感器性能的计算模型的准确性。对于需要固化的材料,材料特性的挑战更大。例如,芯片粘接聚合物在制造过程中具有严格的固化曲线要求。这种固化条件通常很难在实验室中复制,并且用于材料特性分析的样品不一定代表最终产品中的实际组件。本研究调查了温度固化曲线、固化过程中施加的压力以及样品制备技术等参数对两种芯片粘接弹性体随温度变化的热机械性能的影响。使用动态机械分析和热机械分析等一系列技术测量芯片粘接材料的机械性能,包括弹性模量 (E)、热膨胀系数和玻璃化转变温度。分析针对与典型传感器应用相对应的宽温度范围进行。结果表明,样品制备和表征技术对测量有相当大的影响,从而通过计算建模得出不同的 MEMS 传感器性能预测。
① 本产品目录中记载的焊接材料、熔敷金属、焊缝金属等的性能数据,仅用于说明产品的典型性能和使用效果,不作为《标准》的规定。本产品目录中没有记载任何性能数据。应被解释为明示或暗示的保证。 ②请注意,实际焊接结构的性能受结构设计、钢板化学成分、施工方法、焊接条件、施工人员的技能等因素的影响。对客户的通知和要求
提供疫苗及服务时间 可用疫苗及服务时间 * 最后接种时间下午为服务时间结束前三十分钟。一时三十分至二时三十分为清洁时间。 最后一次接种:服务时间结束前 30 分钟。下午 1:30 至 2:30 期间关闭以进行清洁。 香港儿童医院 香港儿童医院