精神分裂症(SCZ)是一种复杂而异质的神经精神疾病,缺乏客观的诊断指标,病原体尚不清楚。遗传因素可能对病情发展产生重大影响。在SCZ患者的辅助诊断过程中获得活检的脑组织可能是不可能的,但外周血的收集更容易获得,更易于实施。近年来,RNA测序技术的开发和应用使寻求SCZ的生物标志物变得更加可行。有新兴的证据表明某些非编码RNA(NCRNA)在SCZ患者的外周血和健康对照组中截然不同。尽管这些机制尚不清楚,但这些异常表达的NCRNA可能与SCZ的发作和发展密切相关,并且对于SCZ的诊断和治疗可能具有重要意义。因此,我们回顾了在SCZ患者的外周血中发现的不同类型的NCRNA的表达,并探讨了其作为SCZ诊断生物标志物的潜在应用。SCZ患者的外周血中差异表达的NCRNA不仅可以作为SCZ的潜在诊断生物标志物和治疗靶标,而且还可能对了解SCZ发展的分子机制和SCZ复杂的病因学的理解有影响。直接从外周血获得的早期诊断生物标志物对于及时诊断和治疗SCZ具有重要意义。我们的综述将增强对SCZ的分子机制的理解,并有助于鉴定出有望的NCRNA,以识别SCZ诊断和治疗的外周血中的NCRNA。
图1:人脑中的种群尺度染色质可及性分析。a)从469个独特的供体中获得脑组织标本,其中包括精神分裂症(SCZ)(n = 157),BD(n = 77)和对照组(n = 235)。风扇分离出神经元和非神经元核,并进行了ATAC-SEQ分析以产生总共1,393个文库。b)Venn图显示了已识别OCR的细胞类型(左)和脑区域(右)(右)特异性。c)顶部:示意图显示增强器启动器链接。灰色盒子,浅灰色盒子和黑色箭头分别代表OCR,TSS和基因体。底部:饼图中的分布显示了注释到神经元(红色的阴影)和非神经元(蓝色)OCR的19,749个基因的分层。神经元中的精神分裂症OCR富含精神分裂症风险变体,我们接下来研究了与精神分裂症和BD相关的染色质可及性模式的变化
1 Department of Neuroscience (DNS), University of Padova, Padua, Italy 2 Padova Neuroscience Center, University of Padova, Padua, Italy 3 Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King ' s College London, London, United Kingdom 4 Department of Mental Health and Addictions, ASST Papa Giovanni XXIII, Bergamo, Italy 5 Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany 6 International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany 7 Max-Planck-Institute of Psychiatry, Munich, Germany 8 Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy 9 Department of Neurosciences and Mental Health, Fondazione IRCSS Ca ' Granda Ospedale Maggiore Policlinico, Milan, Italy 10 Department of Psychiatry, Munich University Hospital, Munich, Germany 11 Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King ' s College London, London, United Kingdom * Correspondence: Email: fabio.sambataro@unipd.it
奖励的自适应编码是神经元对可用补偿背景的反应的过程。较高的奖励会导致更强的大脑反应,但是响应的增加取决于可用奖励的范围。在狭窄范围内观察到更陡峭的增加,并且在更广泛的范围内逐渐逐渐增加。在精神分裂症中,自适应编码似乎在不同领域,尤其是在奖励领域中受到影响。在这里,我们测试了大量精神分裂症患者(n = 86)和对照组(n = 66)的奖励的自适应编码。我们评估了:(i)自适应编码缺陷和症状之间的关联; (ii)缺陷的纵向稳定性(相同的任务相同3个月); (iii)两个实验部位之间结果的稳定性。我们使用功能性MRI和货币激励延迟任务来评估参与者对两个不同的奖励范围的适应:狭窄范围和广泛范围。我们使用利率分析来评估纹状体和视觉区域内的适应性。患者和对照受试者接受了全面的人口统计和临床评估。我们发现患者的自适应编码降低,在狭窄的奖励范围内,相对于对照参与者,纹状体但没有视觉区域的奖励范围降低。在两个研究地点都观察到了这种模式。进行重新测试后,患者增加了狭窄的斜率,显示了改善的自适应编码,而对照受试者则略微降低了它们。在重新测试时,狭窄范围内斜坡过高的患者也显示出更高水平的负症状。我们的数据证实了精神分裂症奖励适应的缺陷,并揭示了患者实践的影响,从而改善了改善,重新测试时坡度较高。但是,在某些患者中,由于大脑反应的早期饱和,坡度过高可能导致更大的奖励可区分性。一起,在新的(第一次接触,适应不足)和更熟悉的(重新测试,过度适应)情况下丧失奖励表示的损失可能会导致精神分裂症的多种动机症状。
精神分裂症影响着 1% 的人口,它被定义为一种思维和感知异常、持续性社交退缩和情感淡漠的障碍。精神分裂症通常于成年早期首次确诊,这种疾病会持续存在且使人严重衰弱。尽管诊断的重点是思维和感知异常(“幻觉”和“妄想”),但 Kraepelin 在 130 多年前对精神分裂症的早期描述中强调了在症状出现之前会出现缓慢的认知能力下降和其他发育体征。虽然针对精神分裂症早期发育表现的研究始于 20 世纪 60 年代,但直到 1987 年才概述了精神分裂症的病因模型,表明精神分裂症是一种神经发育起源的障碍 [1]。这种所谓的精神分裂症神经发育假说已成为该疾病的主要病因模型。
经颅直流电刺激 (tDCS) 是一种非侵入性脑刺激方法,通过在阳极和阴极电极之间短时间(通常每次少于 30 分钟)施加电流(通常小于 2 mA)来调节神经活动 (17)。之前的荟萃分析报告称,向背外侧前额皮质 (DLPFC) 施加 tDCS 可减轻精神分裂症患者的幻觉(阳性症状;Hedges' g = 0.86)和阴性症状(0.41),并改善神经认知功能,特别是工作记忆(0.41)(18-23)。最近,据报道,针对 DLPFC 的 tDCS 还可以提高日常生活技能(功能能力)(24)、对疾病的洞察力(25)和元认知(26)。关于社会认知,我们系统回顾的数据表明,前额皮质上的经颅直流电刺激 (tDCS) 可增强情绪识别 (27),而左侧颞上沟 (STS) 上的刺激可提高这些患者的心理理论得分 (28-30)。因此,尽管存在争议,但经颅直流电刺激 (tDCS) 的电极组合,尤其是阳极刺激部位,可能决定其对精神病患者症状和功能的影响 (31-33)。总之,需要进一步考虑以了解应刺激哪些大脑区域以改善精神分裂症的特定症状 (34)。
摘要:准确诊断精神分裂症是一种复杂的精神疾病,对于有效管理治疗过程和方法至关重要。各种类型的磁共振 (MR) 图像都有可能作为精神分裂症的生物标志物。本研究旨在通过结构 MR 图像对精神分裂症患者和健康对照者大脑双侧杏仁核、尾状核、苍白球、壳核和丘脑区域可能出现的纹理特征差异进行数值分析。为此,使用机器学习方法对从右脑、左脑和双侧大脑的五个区域获得的灰度共生矩阵 (GLCM) 特征进行分类。此外,还分析了这些特征在哪个半球更具特色,以及 Adaboost、Gradient Boost、eXtreme Gradient Boosting、随机森林、k-Nearest Neighbors、线性判别分析 (LDA) 和朴素贝叶斯中的哪种方法具有更高的分类成功率。检查结果显示,左半球这五个区域的 GLCM 特征在精神分裂症患者中的分类性能优于健康人。使用 LDA 算法,在健康和精神分裂症患者中,分类成功率为 100% AUC、94.4% 准确率、92.31% 灵敏度、100% 特异性和 91.9% F1 得分。因此,这表明五个预定区域而不是整个大脑的纹理特征是识别精神分裂症的重要指标。
项目协调员:Ole Andreassen 教授,奥斯陆大学研究所临床医学系,RCN,挪威奥斯陆项目合作伙伴:Marcella Rietschel 教授,中央精神卫生研究所,精神病学遗传流行病学系,BMBF,德国曼海姆 Stefan Borgwardt 教授,巴塞尔大学,SNSF 精神病学系,瑞士巴塞尔 Marja-Leena Linne 教授,坦佩雷理工大学,生物医学科学与工程学院,AKA,芬兰坦佩雷 Dirk Schubert 助理教授,拉德堡德大学医学中心,Donders 大脑、认知和行为研究所,认知神经科学系,NOW,荷兰奈梅亨 Magdalena Budisteanu 博士,Alex Obregia 教授,精神病学临床医院,UEFISCDI 研究精神病学实验室,罗马尼亚布加勒斯特 精神分裂症是一种严重的衰弱性精神疾病,其特征是幻觉、妄想、认知障碍和功能下降。它是社会面临的主要挑战之一,大量患者的需求尚未得到满足,欧洲社会为此付出了高昂的医疗费用。在过去十年中,人们已经清楚地认识到,精神分裂症是一种大脑不同区域无法正常沟通的疾病。与此同时,最近的基因发现指出了脑细胞(神经元)的沟通功能障碍。这些见解综合起来表明,大脑神经元之间的连接(突触)存在故障。然而,导致精神分裂症的确切突触机制仍然难以捉摸。SYNSCHIZ 项目由来自挪威、德国、瑞士、芬兰、罗马尼亚和荷兰的专家合作开展,他们使用最先进的方法研究从基因到神经元细胞再到大脑网络等各个层面的突触功能障碍。这包括在大型国际样本中发现基因、创建突触的计算机模型、在神经元中对模型进行实验验证以及对大脑网络进行成像以测试人类的突触功能。通过研究从基因到大脑网络等各个层面与突触功能障碍相关的疾病模式,我们将阐明精神分裂症的具体机制。此外,揭示这些机制还可以产生生物标记物,可用于在严重症状爆发之前的早期阶段预测疾病。这将使临床医生能够缩短未治疗疾病的持续时间并提供早期支持。SYNSCHIZ 研究人员都是不同领域的专家。我们可以共同将精神分裂症拼图的不同部分连接起来,并实现宏伟的目标。因此,SYNSCHIZ 将增加我们对精神分裂症背后的突触机制的理解,并将促进治疗和潜在预防精神疾病的新发展。SYNSCHIZ 非常适合将科学发现转化为临床应用。
精神分裂症是一种神经认知疾病,其特征是早期听觉处理和高阶言语工作记忆中的行为和神经障碍。之前,我们已经证明,与强调视觉处理的计算机游戏 (CG) 控制干预相比,计算机化的、有针对性的听觉处理 (AT) 训练可以改善干预特定的认知表现。为了研究 AT 干预特有的神经活动模式的时空变化,本研究使用脑磁图 (MEG) 成像来推导听觉编码过程中诱发的高伽马波段振荡 (HGO),在接受 AT 或 CG 干预 50 小时(约 10 周)之前和之后。在刺激编码过程中,AT 干预特有的高伽马活动变化发生在左侧
一项科学精神病学和心理药物学研究(SINAPS),大学精神病医院校园Duffel(UPCD),Rooienberg,19,2570 Duffel,Belgium b合作安特卫普精神病学院(CAPRI) ETEIL(UPEC),INSERM,IMRB转化神经精神病学实验室,AP-HP,H ˆ Opitaux Universitaires H Mondor,DMU Impact,FHU,FHU适应,Fondation Condation Condation con,Medical Informatics Center,France(Biomina),法国,Antwerp,Antwerp,Middelheim,Middelheim,Middelheim,Middelhem111,Middelhem111数学和计算机科学,安特卫普大学,校园Middelheim,MG105,Antwerp,Belgium f Inserm Investment Center,HP,HP,13,H Henri Mondor医院,巴黎大学埃斯特·埃斯蒂尔大学EHôpitalde Mondor 51 Tre de Tassigny,94010 Cr´Eteil,法国