认识到脑电图中的情绪(EEG)是情感脑部计算机界面(ABCI)领域中有前途且宝贵的研究问题。为提高情绪识别的准确性,根据脑电图信号中的时间信息提出了一种情感特征提取方法。这项研究采用微晶格分析作为脑电图信号的时空分析。微骨被定义为一系列瞬时准稳定的头皮电势地形。脑电活动可以建模为由微骨的时间序列组成。微晶序序列提供了一个理想的宏观窗口,用于观察自发脑活动的时间动力学。为了进一步分析微晶序列的精细结构,我们提出了一种基于K-MER的特征提取方法。k-mer是给定序列的k长度底带。它已被广泛用于计算基因组学和序列分析。我们提取基于K-MER的D 2 *统计量的功能。此外,我们还提取每个微晶体类别的四个参数(持续时间,出现,时间覆盖,GEV,GEV)作为粗级的特征。我们在DEAP数据集上进行了实验,以评估所提出的特征的性能。实验结果表明,在细水平和粗糙水平上的特征融合可以有效提高分类精度。
氧析出反应 (OER) 是所有使用水作为氢源的反应(如氢析出和电化学 CO 2 还原)的关键元素,而提供 OER 电催化剂上高活性位点的新型设计原理突破了它们实际应用的极限。本文证明了金簇负载在单层剥离层状双氢氧化物 (ULDH) 电催化剂上用于 OER 以在金簇和 ULDH 之间制造异质界面作为活性位点,同时伴随着活性位点氧化态的调节和界面直接 O O 偶联(“界面 DOOC”)。负载金簇的 ULDH 对 OER 表现出优异的活性,在 10 mA cm −2 时的过电位为 189 mV。 X射线吸收精细结构测量表明,从金团簇到超低分子量聚乙烯的电荷转移改变了三价金属离子的氧化态,而这些离子可以作为超低分子量聚乙烯上的活性位点。本研究采用高灵敏度的反射吸收红外光谱和调制激发光谱以及密度泛函理论计算相结合的光谱技术,表明金团簇和超低分子量聚乙烯界面处的活性位点通过界面DOOC促进了一种新的OER机制,从而实现了优异的催化性能。
摘要 大脑皮层如何处理信息?为了回答这个问题,人们付出了很多努力来创造新的和进一步开发现有的神经成像技术。因此,fMRI 设备的高空间分辨率是准确定位认知过程的关键。此外,电生理装置的时间分辨率和记录通道数量的增加为研究神经活动的确切时间打开了大门。然而,在大多数情况下,记录的信号是多次(刺激)重复的平均,这会抹去神经信号的精细结构。在这里,我们展示了一种无监督机器学习方法可用于从单次试验的电生理记录中提取有意义的信息。我们使用自动编码器网络来减少单个局部场电位 (LFP) 事件的维度,以创建可解释的不同神经活动模式集群。令人惊讶的是,某些 LFP 形状对应于不同记录通道中的延迟差异。因此,LFP 形状可用于确定大脑皮层中信息流的方向。此外,在聚类之后,我们解码了聚类中心,以逆向工程底层的原型 LFP 事件形状。为了评估我们的方法,我们将其应用于啮齿动物的神经细胞外记录和人类的颅内 EEG 记录。最后,我们发现自发活动期间的单通道 LFP 事件形状来自可能的刺激诱发事件形状的范围。迄今为止,这一发现仅在多通道群体编码中得到证实。
本文重点介绍了位置准确性低的问题和在复杂环境中移动机器人的不良环境感知性能。它基于IMU和GP的机器人姿势信息和环境知觉信息进行了关键的技术研究,以检测机器人自己的姿势信息,以及激光雷达和3D摄像头,以感知环境信息。在“姿势信息融合层”中,粒子群处理算法用于优化BP神经网络。没有偏见的卡尔曼过滤,并实现了未经意识的卡尔曼滤波器,以实现INS-GPS松散耦合导航,从而减少了INS组件IMU的偏见和噪声。此外,当GPS信号丢失发生时,训练有素的神经网络可用于输出预测信息,以进行惯性导航系统的错误校正,提供更准确的速度,并将信息作为绝对位置约束。在环境感知融合层中,补偿的IMU预一整合性调查分别与次要水平分别与视觉探光仪和激光镜探测融合。这使机器人的实时精确定位和环境图的更精细结构。最后,使用实际收集的轨迹来验证算法,以进行multi传感器信息的两级融合。实验结果表明,该算法提高了机器人的定位准确性和环境感知性能。机器人运动轨迹和原始真实轨迹之间的最大误差为1.46 m单位,而最小误差为0.04 m单位,平均误差为0.60 m。
• 这是基于自制低温太赫兹扫描近场光学显微镜 (SNOM) 的新进展,它能够探测太赫兹频率范围内材料的纳米电磁响应。本研究可视化了电子-光子准粒子的传播,并揭示了狄拉克流体中的强电子相互作用。手稿现已发布在 arXiv (arXiv:2311.11502) 上 • 在本研究中,我们测量了单层石墨烯中移动极化子波包的动力学。等离子体极化子的运动记录在具有超精细时空像素的 (1+1)d 图上。 • 我们开发了基于石墨烯交流电导率计算极化子群速度和极化子寿命的理论模型。这些模型完全捕捉了不同温度下费米液体和狄拉克流体状态下的实验观测结果。 • 我们对极化腔模式进行了温度依赖性研究,并证明了在 55K 下极化寿命长达 5 皮秒。 • 我们研究了狄拉克流体中的电子相互作用如何改变极化动力学。极化重正化在电荷中性点最为明显,其中等离子体极化子由相同密度的热激活电子和空穴维持。重正化表现为群速度和极化寿命的降低,这两者都取决于载流子密度。我们能够定量提取石墨烯的电子散射率和精细结构常数,这可作为石墨烯中电子相互作用强度的量度。
通讯员 原子(和分子)光谱中充满了信息,但遗憾的是,由于光谱线的精细结构通常无法解析,因此有些信息无法获取。因此,光谱学家不断努力提高光谱分辨率。然而,光谱分辨率的限制并不总是工具性的,而可能是原子组合所固有的。例如,由于气体原子的热运动,它们在光源传播方向上呈现出一系列速度。现在,如果 vo 是将原子从(尖锐)较低能态提升到(尖锐)较高能态所需的辐射频率(当原子相对于光源静止时),那么远离光源的原子每秒“看到”的波数(即频率)小于 vo。当然,远离光源的原子必须吸收它认为具有频率 vo 的辐射,因此相对于静止光源,该频率必须超过 vo。原子速度在源方向上的麦克斯韦-波尔兹曼分布确保了吸收频率的分布,即使每个原子都有尖锐的能级,即所谓的多普勒增宽。如果只选择相对于源的速度较窄的原子,使它们都以相同的频率吸收,则可以克服多普勒增宽。使用了几种速度选择技术,包括原子束和激光饱和光谱(参见《自然》,235,127;1972 年)。现在,两个研究小组分别描述了另一种处理多普勒增宽的优雅方法(Biraben、Cagnac 和 Grynberg,《物理评论快报》,23,643;1974 年;Levenson 和 Bloembergen,同上,645)。这些作者使用的技术的本质非常简单。这两个研究小组都研究了通常被禁止的 5S
JHR 是 CEA 卡达拉什正在建造的新型材料测试反应堆。目前,堆芯的中子特性是利用 HORUS3D/N 确定性方案计算的。该方案的工业路线采用两步法,首先是 APOLLO2 MOC 格子计算,然后是基于扩散理论的 CRONOS2 堆芯计算。APOLLO3 ® 是 CEA 新的确定性计算平台,它采用了先进的计算方法。在本文中,正在使用 APOLLO3 ® 带来的新方法为 JHR 建立一个新的参考计算方案。该计算方案通过 TRIPOLI4 ® 执行的参考随机模拟进行了验证。与在 APOLLO3 ® 中模拟 HORUS3D/N 方案的方案结果相比,格子步骤的改进可以显著减少燃料元件和 Hf 控制棒的吸收率偏差。新方案的主要变化在于使用子群自屏蔽法替代精细结构等效法。这些变化与细化几何网格和 383 能级组结构有关。来自晶格台阶的压缩截面用于计算插入五根 Hf 控制棒的 2D JHR 堆芯配置的中子平衡。新的计算方案中添加了堆芯反射器超级晶胞,以产生细化的反射器截面。使用较粗的 41 组结构执行的 MOC 2D 堆芯计算保留了晶格计算的改进,并可以更好地预测反应性和反应速率。下一步将使用包括堆芯实验装置在内的带耗尽层的 3D Sn MINARET 全堆芯计算。关键词:APOLLO3 ®、JHR、确定性计算方案、共振自屏蔽方法。
在溶剂热条件下,使用 SnCl 4 和 LiNH 2 前体,开发了一种合成尖晶石结构 Sn 3 N 4 的简单且可扩展的新方法。生产了晶粒尺寸 <10 nm 的纳米晶体 Sn 3 N 4,并作为钠半电池的阳极材料进行了测试,结果表明,在 50 次循环中测得的可逆(脱钠)容量非常高,约为 850 mA hg -1,这是除钠本身之外的钠阳极的最高可逆容量。原位 X 射线吸收光谱和 X 射线衍射表明,电化学反应是可逆的,并且 Sn 3 N 4 在重新氧化后会恢复。X 射线衍射表明,与 Sn 3 N 4 反射相关的峰在放电(还原)过程中变窄,证明较小的 Sn 3 N 4 颗粒主要参与电化学反应,并且峰的加宽在氧化后可以可逆地恢复。近边 X 射线吸收数据 (XANES) 分析表明,Sn 的氧化态在还原过程中降低,在氧化过程中几乎恢复到初始值。DFT 计算表明,Na 插入 Sn3N4 表面,然后用 Na 取代四面体 Sn 在能量上是有利的,而从还原电极的扩展 X 射线吸收精细结构 (EXAFS) 测量分析中获得了四面体 Sn 从尖晶石 Sn3N4 结构中去除的证据,这也表明氧化结束时恢复了原始结构。DFT 还表明,Na 取代 Sn 仅在 Sn3N4 表面有利(对块状 Sn3N4 不起作用),这与电化学表征一致,即控制纳米颗粒尺寸对于充分利用 Sn3N4(从而实现高容量)至关重要。
为了将以前未开发的电磁波谱部分用于丰富的复杂新服务(通信),需要在对流层中测量无线电折射率的微小变化。关于地球大气边界层(与大陆和海洋直接热接触和摩擦接触的空气)无线电折射率精细结构的高分辨率信息可用于许多应用,例如航天器跟踪、卫星导航、无线电干涉测量、遥感等。最新的发展使得我们能够通过现场和遥感技术在所有重要的空间和时间尺度上研究大气的这一区域。由于传统气象系统(如无线电探空仪、投投探空仪等)的内在缺陷,无线电折射率的大多数急剧梯度都被消除了。机载微波折射仪是一种非常精密的仪器,可以近乎实时地提供无线电折射率的精细结构信息数据。它的垂直高度分辨率约为一米或更低。它是唯一适合获取亚折射和超折射以及管道发生统计数据的仪器,可用于无线电和雷达操作的实时评估。该折射仪有助于了解热带边界层的微物理特性以及设计厘米波和毫米波无线电系统。该地区的物理特性是非平稳的,因为该地区的特点是存在温度和湿度逆变,这会导致无线电折射率以层的形式出现严重的不均匀性。这种高分辨率无线电气候信息在印度几乎不存在。为了收集此类信息,本文作者开发了一种机载微波折射仪(Sarma 等人,1975 年),并在后来几年考虑到工程和航空电子方面改进了设计,并于 1983 年、1985 年和 1988 年进行了飞行测试。
具有良好潜在应用前景的纳米结构无机材料引起了基础和实际方面的广泛研究关注。SiO 2 (二氧化硅) 是最广泛使用的无机材料之一,在微电子 1、2 、微机电系统 3、4 和微光子学 5、6 等领域需要具有纳米级分辨率的制造方法。为了制造具有所需纳米结构的二氧化硅,通常需要复杂的自上而下的图案化工艺,包括热氧化 7 和化学气相沉积 8,然后进行干 9、10 或湿 11、12 蚀刻步骤。虽然已经开发出具有高产量的成熟加工技术,但这些技术涉及使用危险化学品(例如抗蚀剂、显影剂和蚀刻剂)并且需要复杂的制造设备。此外,使用自上而下的制造方法实现纳米分辨率的复杂和/或不对称的三维 (3D) 结构非常具有挑战性。因此,对能够生产具有复杂几何形状和化学变化的 3D 二氧化硅结构的直接纳米制造技术的需求很大。新兴的增材制造 (AM) 技术或使用数字设计的 3D 打印可以通过逐层沉积 13-16 创建精细结构,以生成复杂的结构并简化制造过程。更重要的是,作为一种已得到充分证明的自下而上的技术,据报道 3D 打印可以构造曲线基底 17、非平面表面 18 和曲折的 3D 图案 19,这些超出了传统自上而下的图案化方法的能力。熔融石英玻璃的 AM 是通过对无定形富含二氧化硅的浆料 20 进行立体光刻实现的,分辨率为几十微米。尽管已经制造出具有出色光学和机械性能的明确结构,但商用 3D 打印技术提供的空间分辨率相对较低,限制了它们在微电子、微机电系统和微光子学中的应用。新兴的微数字光处理技术 2